scholarly journals Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells

2016 ◽  
Vol 7 ◽  
Author(s):  
Rui C. Pereira ◽  
Daniela Martinelli ◽  
Ranieri Cancedda ◽  
Chiara Gentili ◽  
Alessandro Poggi
2005 ◽  
Vol 25 (17) ◽  
pp. 7743-7757 ◽  
Author(s):  
Kei Ohnuma ◽  
Tadanori Yamochi ◽  
Masahiko Uchiyama ◽  
Kunika Nishibashi ◽  
Satoshi Iwata ◽  
...  

ABSTRACT CD26 is a T-cell costimulatory molecule with dipeptidyl peptidase IV enzyme activity in its extracellular region. We have previously reported that the addition of recombinant soluble CD26 resulted in enhanced proliferation of human T lymphocytes induced by the recall antigen tetanus toxoid (TT) via upregulation of CD86 on monocytes and that caveolin-1 was a binding protein of CD26, and the CD26-caveolin-1 interaction resulted in caveolin-1 phosphorylation (p-cav-1) as well as TT-mediated T-cell proliferation. However, the mechanism involved in this immune enhancement has not yet been elucidated. In the present work, we perform experiments to identify the molecular mechanisms by which p-cav-1 leads directly to the upregulation of CD86. Through proteomic analysis, we identify Tollip (Toll-interacting protein) and IRAK-1 (interleukin-1 receptor-associated serine/threonine kinase 1) as caveolin-1-interacting proteins in monocytes. We also demonstrate that following stimulation by exogenous CD26, Tollip and IRAK-1 dissociate from caveolin-1, and IRAK-1 is then phosphorylated in the cytosol, leading to the upregulation of CD86 via activation of NF-κB. Binding of CD26 to caveolin-1 therefore regulates signaling pathways in antigen-presenting cells to induce antigen-specific T-cell proliferation.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2421-2427 ◽  
Author(s):  
Laura Piccio ◽  
William Vermi ◽  
Kent S. Boles ◽  
Anja Fuchs ◽  
Carey A. Strader ◽  
...  

AbstractSignal-regulatory proteins (SIRPs) are transmembrane glycoproteins belonging to the immunoglobulin (Ig) superfamily that are expressed in the immune and central nervous systems. SIRPα binds CD47 and inhibits the function of macrophages, dendritic cells, and granulocytes, whereas SIRPβ1 is an orphan receptor that activates the same cell types. A recently identified third member of the SIRP family, SIRPβ2, is as yet uncharacterized in terms of expression, specificity, and function. Here, we show that SIRPβ2 is expressed on T cells and activated natural killer (NK) cells and, like SIRPα, binds CD47, mediating cell-cell adhesion. Consequently, engagement of SIRPβ2 on T cells by CD47 on antigen-presenting cells results in enhanced antigen-specific T-cell proliferation.


2001 ◽  
Vol 30 (2) ◽  
pp. 143-156 ◽  
Author(s):  
Richiko Beppu ◽  
Ken Nakamura ◽  
Hiroko Miyajima-Uchida ◽  
Motomu Kuroki ◽  
Pranay D. Khare ◽  
...  

2020 ◽  
Vol 222 (1) ◽  
pp. 148-157
Author(s):  
Aman Mehrotra ◽  
June Ann D’Angelo ◽  
Amanda Romney-Vanterpool ◽  
Tom Chu ◽  
Antonio Bertoletti ◽  
...  

Abstract Background Interferon-α (IFN-α) can suppress production of T-cell polarizing cytokines or induce inhibitory antigen-presenting cells that suppress T-cell activation. Previous studies showed that IFN-α therapy fails to boost virus-specific T-cell immunity in patients with chronic hepatitis B virus infection. Our aim was to determine whether IFN-α exposure alters human antigen-presenting cell function in vivo. Methods We investigated the immunomodulatory effects using peripheral blood mononuclear cells from healthy donors exposed to IFN-α and chronic hepatitis B (CHB) patients starting IFN-α therapy. Results IFN-α increased HLA-DR, CD80, CD86, and PD-L1 expression on healthy donor monocytes. In contrast to the activated phenotype, IFN-α inhibited Toll-like receptor-induced cytokine production and monocyte-induced T-cell proliferation. In CHB patients, peg-IFN treatment induced an interferon-stimulated gene signature in monocytes and increased HLA-DR, CD80, CD86, and PD-L1 expression. As early as 3 days after CHB patients started treatment, IFN-α inhibited monocyte cytokine production and T-cell stimulation ex vivo. IFN-α-mediated inhibition of IL-12 production, rather than inhibitory receptor expression, was responsible for inhibition of T-cell proliferation. Addition of IL-12 restored T-cell proliferation to baseline levels. Conclusions Understanding how professional antigen-presenting cells respond to immunomodulation is important for both new innate and adaptive-targeted immunotherapies. Clinical Trials Registration NCT00962871.


Sign in / Sign up

Export Citation Format

Share Document