scholarly journals “Immuno-Transient Receptor Potential Ion Channels”: The Role in Monocyte- and Macrophage-Mediated Inflammatory Responses

2018 ◽  
Vol 9 ◽  
Author(s):  
Giorgio Santoni ◽  
Maria Beatrice Morelli ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Massimo Nabissi ◽  
...  
2001 ◽  
Vol 355 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Claudia TROST ◽  
Christiane BERGS ◽  
Nina HIMMERKUS ◽  
Veit FLOCKERZI

The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.


2012 ◽  
Vol 287 (44) ◽  
pp. 36663-36672 ◽  
Author(s):  
Julia Frühwald ◽  
Julia Camacho Londoño ◽  
Sandeep Dembla ◽  
Stefanie Mannebach ◽  
Annette Lis ◽  
...  

2021 ◽  
Author(s):  
Javier Casas ◽  
Clara Meana ◽  
José Ramón López-López ◽  
Jesús Balsinde ◽  
María A. Balboa

ABSTRACTToll-like receptor 4, the receptor for bacterial lipopolysaccharide (LPS), drives inflammatory responses that protect against pathogens and boost the adaptive immunity. LPS responses are known to depend on calcium fluxes, but the molecular mechanisms involved are poorly understood. Here we present evidence that the transient receptor potential canonical channel 3 (TRPC3) is activated intracellularly during macrophage exposure to LPS and is essential for Ca2+ release from internal stores. In this way TRPC3 participates in cytosolic Ca2+ elevations, TLR4 endocytosis, activation of inflammatory transcription factors and cytokine upregulation. We also report that TRPC3 is activated by diacylglycerol (DAG) generated by the phosphatidic acid phosphatase lipin-1. In accord with this, lipin-1-deficient cells show reduced Ca2+ responses to LPS challenge. A cameleon indicator directed to the endoplasmic reticulum shows that this is the organelle from which TRPC3 mediates the Ca2+ release. Finally, pharmacological inhibition of TRPC3 reduces systemic inflammation induced by LPS in mice. Collectively, our study unveils a central component of LPS-triggered Ca2+ signaling that involves intracellular sensing of lipin-1-derived DAG by TRPC3.


2016 ◽  
Vol 310 (11) ◽  
pp. F1157-F1167 ◽  
Author(s):  
Yiming Zhou ◽  
Anna Greka

Calcium ions (Ca2+) are crucial for a variety of cellular functions. The extracellular and intracellular Ca2+ concentrations are thus tightly regulated to maintain Ca2+ homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca2+ homeostasis by filtration and reabsorption. Approximately 60% of the Ca2+ in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca2+ is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca2+-permeable ion channel families as important regulators of Ca2+ homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca2+-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.


2018 ◽  
Vol 59 (10) ◽  
pp. 1851-1863 ◽  
Author(s):  
Éva Sághy ◽  
Maja Payrits ◽  
Tünde Bíró-Sütő ◽  
Rita Skoda-Földes ◽  
Eszter Szánti-Pintér ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document