scholarly journals The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins

2001 ◽  
Vol 355 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Claudia TROST ◽  
Christiane BERGS ◽  
Nina HIMMERKUS ◽  
Veit FLOCKERZI

The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.

2019 ◽  
Vol 20 (8) ◽  
pp. 2012 ◽  
Author(s):  
Soichiro Yamaguchi ◽  
Akira Tanimoto ◽  
Shinsuke Iwasa ◽  
Ken-ichi Otsuguro

Transient receptor potential melastatin member 4 (TRPM4) and 5 (TRPM5) channels are Ca2+-activated nonselective cation channels. Intracellular Ca2+ is the most important regulator for them to open, though PI(4,5)P2, a membrane phosphoinositide, has been reported to regulate their Ca2+-sensitivities. We previously reported that negatively-charged amino acid residues near and in the TRP domain are necessary for the normal Ca2+ sensitivity of TRPM4. More recently, a cryo-electron microscopy structure of Ca2+-bound (but closed) TRPM4 was reported, proposing a Ca2+-binding site within an intracellular cavity formed by S2 and S3. Here, we examined the functional effects of mutations of the amino acid residues related to the proposed Ca2+-binding site on TRPM4 and also TRPM5 using mutagenesis and patch clamp techniques. The mutations of the amino acid residues of TRPM4 and TRPM5 reduced their Ca2+-sensitivities in a similar way. On the other hand, intracellular applications of PI(4,5)P2 recovered Ca2+-sensitivity of desensitized TRPM4, but its effect on TRPM5 was negligible. From these results, the Ca2+-binding sites of TRPM4 and TRPM5 were shown to be formed by the same amino acid residues by functional analyses, but the impact of PI(4,5)P2 on the regulation of TRPM5 seemed to be smaller than that on the regulation of TRPM4.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 322 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini

Recently, the finding of cancer stem cells in brain tumors has increased the possibilitiesfor advancing new therapeutic approaches with the aim to overcome the limits of current availabletreatments. In addition, a role for ion channels, particularly of TRP channels, in developing neuronsas well as in brain cancer development and progression have been demonstrated. Herein, we focuson the latest advancements in understanding the role of TRPV2, a Ca2+ permeable channel belongingto the TRPV subfamily in neurogenesis and gliomagenesis. TRPV2 has been found to be expressedin both neural progenitor cells and glioblastoma stem/progenitor-like cells (GSCs). In developingneurons, post-translational modifications of TRPV2 (e.g., phosphorylation by ERK2) are required tostimulate Ca2+ signaling and nerve growth factor-mediated neurite outgrowth. TRPV2overexpression also promotes GSC differentiation and reduces gliomagenesis in vitro and in vivo.In glioblastoma, TRPV2 inhibits survival and proliferation, and induces Fas/CD95-dependentapoptosis. Furthermore, by proteomic analysis, the identification of a TRPV2 interactome-basedsignature and its relation to glioblastoma progression/recurrence, high or low overall survival anddrug resistance strongly suggest an important role of the TRPV2 channel as a potential biomarkerin glioblastoma prognosis and therapy.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Hideki Kashiwadani ◽  
Yurina Higa ◽  
Mitsutaka Sugimura ◽  
Tomoyuki Kuwaki

AbstractWe had recently reported that linalool odor exposure induced significant analgesic effects in mice and that the effects were disappeared in olfactory-deprived mice in which the olfactory epithelium was damaged, thus indicating that the effects were triggered by chemical senses evoked by linalool odor exposure. However, the peripheral neuronal mechanisms, including linalool receptors that contribute toward triggering the linalool odor-induced analgesia, still remain unexplored. In vitro studies have shown that the transient receptor potential ankyrin 1 (TRPA1) responded to linalool, thus raising the possibility that TRPA1 expressed on the trigeminal nerve terminal detects linalool odor inhaled into the nostril and triggers the analgesic effects. To address this hypothesis, we measured the behavioral pain threshold for noxious mechanical stimulation in TRPA1-deficient mice. In contrast to our expectation, we found a significant increase in the threshold after linalool odor exposure in TRPA1-deficient mice, indicating the analgesic effects of linalool odor even in TRPA1-deficient mice. Furthermore, intranasal application of TRPA1 selective antagonist did not alter the analgesic effect of linalool odor. These results showed that the linalool odor-induced analgesia was triggered by a TRPA1-independent pathway in mice.


2012 ◽  
Vol 287 (44) ◽  
pp. 36663-36672 ◽  
Author(s):  
Julia Frühwald ◽  
Julia Camacho Londoño ◽  
Sandeep Dembla ◽  
Stefanie Mannebach ◽  
Annette Lis ◽  
...  

2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2000 ◽  
Vol 150 (6) ◽  
pp. 1411-1422 ◽  
Author(s):  
Hong-Sheng Li ◽  
Craig Montell

The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.


Sign in / Sign up

Export Citation Format

Share Document