scholarly journals Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids

2021 ◽  
Vol 12 ◽  
Author(s):  
Eva-Stina Edholm ◽  
Christopher Graham Fenton ◽  
Stanislas Mondot ◽  
Ruth H. Paulssen ◽  
Marie-Paule Lefranc ◽  
...  

In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William S DeWitt ◽  
Anajane Smith ◽  
Gary Schoch ◽  
John A Hansen ◽  
Frederick A Matsen ◽  
...  

The T cell receptor (TCR) repertoire encodes immune exposure history through the dynamic formation of immunological memory. Statistical analysis of repertoire sequencing data has the potential to decode disease associations from large cohorts with measured phenotypes. However, the repertoire perturbation induced by a given immunological challenge is conditioned on genetic background via major histocompatibility complex (MHC) polymorphism. We explore associations between MHC alleles, immune exposures, and shared TCRs in a large human cohort. Using a previously published repertoire sequencing dataset augmented with high-resolution MHC genotyping, our analysis reveals rich structure: striking imprints of common pathogens, clusters of co-occurring TCRs that may represent markers of shared immune exposures, and substantial variations in TCR-MHC association strength across MHC loci. Guided by atomic contacts in solved TCR:peptide-MHC structures, we identify sequence covariation between TCR and MHC. These insights and our analysis framework lay the groundwork for further explorations into TCR diversity.


2018 ◽  
Author(s):  
William S DeWitt ◽  
Anajane Smith ◽  
Gary Schoch ◽  
John A Hansen ◽  
Frederick A Matsen ◽  
...  

AbstractThe T cell receptor (TCR) repertoire encodes immune exposure history through the dynamic formation of immunological memory. Statistical analysis of repertoire sequencing data has the potential to decode disease associations from large cohorts with measured phenotypes. However, the repertoire perturbation induced by a given immunological challenge is conditioned on genetic background via major histocompatibility complex (MHC) polymorphism. We explore associations between MHC alleles, immune exposures, and shared TCRs in a large human cohort. Using a previously published repertoire sequencing dataset augmented with high-resolution MHC genotyping, our analysis reveals rich structure: striking imprints of common pathogens, clusters of co-occurring TCRs that may represent markers of shared immune exposures, and substantial variations in TCR-MHC association strength across MHC loci. Guided by atomic contacts in solved TCR:peptide-MHC structures, we identify sequence covariation between TCR and MHC. These insights and our analysis framework lay the groundwork for further explorations into TCR diversity.


2017 ◽  
Vol 137 (6) ◽  
pp. e131-e138 ◽  
Author(s):  
Tiago R. Matos ◽  
Menno A. de Rie ◽  
Marcel B.M. Teunissen

2005 ◽  
Vol 12 (4) ◽  
pp. 477-483 ◽  
Author(s):  
Sanjit Fernandes ◽  
Surendra Chavan ◽  
Vivek Chitnis ◽  
Nina Kohn ◽  
Savita Pahwa

ABSTRACTRationale: evaluation of the T-cell receptor (TCR) Vβ-chain repertoire by PCR-based CDR3 length analysis allows fine resolution of the usage of the TCR Vβ repertoire and is a sensitive tool to monitor changes in the T-cell compartment. A multiplex PCR method employing 24 labeled upstream Vβ primers instead of the conventionally labeled downstream Cβ primer is described. Method: RNA was isolated from purified CD4 and CD8 T-cell subsets from umbilical cord blood and clinical samples using TRI reagent followed by reverse transcription using a Cβ primer and an Omniscript RT kit. The 24 Vβ primers were multiplexed based on compatibility and product sizes into seven reactions. cDNA was amplified using 24 Vβ primers (labeled with tetrachloro-6-cardoxyfluorescein, 6-carboxyfluorescein, and hexachloro-6-carboxyfluorescein), an unlabeled Cβ primer, and Taqgold polymerase. The fluorescent PCR products were resolved on an automated DNA sequencer and analyzed using the Genotyper 2.1 software. Results: Vβ spectratypes of excellent resolution were obtained with RNA amounts of 250 ng using the labeled Vβ primers. The resolution was superior to that obtained with the labeled Cβ primer assay. Also the numbers of PCRs were reduced to 7 from the 12 required in the Cβ labeling method, and the sample processing time was reduced by half. Conclusion: The method described for T-cell receptor Vβ-chain repertoire analysis eliminates tedious dilutions and results in superior resolution with small amounts of RNA. The fast throughput makes this method suitable for automation and offers the feasibility to perform TCR Vβ repertoire analyses in clinical trials.


JCI Insight ◽  
2018 ◽  
Vol 3 (19) ◽  
Author(s):  
Annemieke de Jong ◽  
Ali Jabbari ◽  
Zhenpeng Dai ◽  
Luzhou Xing ◽  
Dustin Lee ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document