repertoire sequencing
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 81)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
pp. ji2100824
Author(s):  
Evan S. Walsh ◽  
Tammy S. Tollison ◽  
Hayden N. Brochu ◽  
Brian I. Shaw ◽  
Kayleigh R. Diveley ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qilong Wang ◽  
Huikun Zeng ◽  
Yan Zhu ◽  
Minhui Wang ◽  
Yanfang Zhang ◽  
...  

Antibody repertoire sequencing (Rep-seq) has been widely used to reveal repertoire dynamics and to interrogate antibodies of interest at single nucleotide-level resolution. However, polymerase chain reaction (PCR) amplification introduces extensive artifacts including chimeras and nucleotide errors, leading to false discovery of antibodies and incorrect assessment of somatic hypermutations (SHMs) which subsequently mislead downstream investigations. Here, a novel approach named DUMPArts, which improves the accuracy of antibody repertoires by labeling each sample with dual barcodes and each molecule with dual unique molecular identifiers (UMIs) via minimal PCR amplification to remove artifacts, is developed. Tested by ultra-deep Rep-seq data, DUMPArts removed inter-sample chimeras, which cause artifactual shared clones and constitute approximately 15% of reads in the library, as well as intra-sample chimeras with erroneous SHMs and constituting approximately 20% of the reads, and corrected base errors and amplification biases by consensus building. The removal of these artifacts will provide an accurate assessment of antibody repertoires and benefit related studies, especially mAb discovery and antibody-guided vaccine design.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Koshlan Mayer-Blackwell ◽  
Stefan Schattgen ◽  
Liel Cohen-Lavi ◽  
Jeremy C Crawford ◽  
Aisha Souquette ◽  
...  

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes – groups of biochemically similar TCRs – that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Author(s):  
Vincent Javaugue ◽  
Virginie Pascal ◽  
Sébastien Bender ◽  
Sarah Nasraddine ◽  
Mathilde Dargelos ◽  
...  

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S77-S77
Author(s):  
Thomas M Snyder ◽  
Rachel M Gittelman ◽  
Mark Klinger ◽  
Damon H May ◽  
Edward J Osborne ◽  
...  

Abstract Background T cells are central to the early identification and clearance of viral infections and support antibody generation by B cells, making them desirable for assessing the immune response to SARS-CoV-2 infection and vaccines. We combined 2 high-throughput immune profiling methods to create a quantitative picture of the SARS-CoV-2 T-cell response that is highly sensitive, durable, diagnostic, and discriminatory between natural infection and vaccination. Methods We deeply characterized 116 convalescent COVID-19 subjects by experimentally mapping CD8 and CD4 T-cell responses via antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I and 284 class II viral peptides. We also performed T-cell receptor (TCR) repertoire sequencing on 1815 samples from 1521 PCR-confirmed SARS-CoV-2 cases and 3500 controls to identify shared public TCRs from SARS-CoV-2-associated CD8 and CD4 T cells. Combining these approaches with additional samples from vaccinated individuals, we characterized the response to natural infection as well as vaccination by separating responses to spike protein from other viral targets. Results We find that T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the SARS-CoV-2 T-cell response peaks about 1-2 weeks after infection and is detectable at least several months after recovery. Applying these data, we trained a classifier to diagnose past SARS-CoV-2 infection based solely on TCR sequencing from blood samples and observed, at 99.8% specificity, high sensitivity soon after diagnosis (Day 3–7 = 85.1%; Day 8–14 = 94.8%) that persists after recovery (Day 29+/convalescent = 95.4%). Finally, by evaluating TCRs binding epitopes targeting all non-spike SARS-CoV-2 proteins, we were able to separate natural infection from vaccination with &gt; 99% specificity. Conclusion TCR repertoire sequencing from whole blood reliably measures the adaptive immune response to SARS-CoV-2 soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points, and distinguishes post-infection vs. vaccine immune responses with high specificity. This approach to characterizing the cellular immune response has applications in clinical diagnostics as well as vaccine development and monitoring. Disclosures Thomas M. Snyder, PhD, Adaptive Biotechnologies (Employee, Shareholder) Rachel M. Gittelman, PhD, Adaptive Biotechnologies (Employee, Shareholder) Mark Klinger, PhD, Adaptive Biotechnologies (Employee, Shareholder) Damon H. May, PhD, Adaptive Biotechnologies (Employee, Shareholder) Edward J. Osborne, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ruth Taniguchi, PhD, Adaptive Biotechnologies (Employee, Shareholder) H. Jabran Zahid, PhD, Microsoft Research (Employee, Shareholder) Rebecca Elyanow, PhD, Adaptive Biotechnologies (Employee, Shareholder) Sudeb C. Dalai, MD, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ian M. Kaplan, PhD, Adaptive Biotechnologies (Employee, Shareholder) Jennifer N. Dines, MD, Adaptive Biotechnologies (Employee, Shareholder) Matthew T. Noakes, PhD, Adaptive Biotechnologies (Employee, Shareholder) Ravi Pandya, PhD, Microsoft Research (Employee, Shareholder) Lance Baldo, MD, Adaptive Biotechnologies (Employee, Shareholder, Leadership Interest) James R. Heath, PhD, Merck (Research Grant or Support, Funding (from BARDA) for the ISB INCOV project, but had no role in planning the research or in writing the paper.) Joaquin Martinez-Lopez, MD, PhD, Adaptive Biotechnologies (Consultant) Jonathan M. Carlson, PhD, Microsoft Research (Employee, Shareholder) Harlan S. Robins, PhD, Adaptive Biotechnologies (Board Member, Employee, Shareholder)


2021 ◽  
Author(s):  
Kaito Nagashima ◽  
John V Dzimianski ◽  
Julianna Han ◽  
Nada Abbadi ◽  
Aaron D Gingerich ◽  
...  

The computationally optimized broadly reactive antigen (COBRA) approach has previously been used to generate hemagglutinin (HA) immunogens for several influenza subtypes that expand vaccine-elicited antibody breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA antigens. Cross-reactivity between wild type HA and H1 COBRA HA proteins were observed at both the oligoclonal B cell level and for a subset of isolated monoclonal antibodies (mAbs). The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 head and stem domains, and the majority of the mAbs had HAI and neutralizing activity against pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had HAI and neutralizing activity against a pre-pandemic H1 strain. One mAb, P1-05, targets the stem region of H1 HA proteins, but does not compete with known stem-targeting H1 mAbs. We determined that mAb P1-05 recognizes a recently discovered membrane proximal epitope on HA, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by P1-05. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiujia Yang ◽  
Yan Zhu ◽  
Sen Chen ◽  
Huikun Zeng ◽  
Junjie Guan ◽  
...  

Detailed knowledge of the diverse immunoglobulin germline genes is critical for the study of humoral immunity. Hundreds of alleles have been discovered by analyzing antibody repertoire sequencing (Rep-seq or Ig-seq) data via multiple novel allele detection tools (NADTs). However, the performance of these NADTs through antibody sequences with intrinsic somatic hypermutations (SHMs) is unclear. Here, we developed a tool to simulate repertoires by integrating the full spectrum features of an antibody repertoire such as germline gene usage, junctional modification, position-specific SHM and clonal expansion based on 2152 high-quality datasets. We then systematically evaluated these NADTs using both simulated and genuine Ig-seq datasets. Finally, we applied these NADTs to 687 Ig-seq datasets and identified 43 novel allele candidates (NACs) using defined criteria. Twenty-five alleles were validated through findings of other sources. In addition to the NACs detected, our simulation tool, the results of our comparison, and the streamline of this process may benefit further humoral immunity studies via Ig-seq.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eva-Stina Edholm ◽  
Christopher Graham Fenton ◽  
Stanislas Mondot ◽  
Ruth H. Paulssen ◽  
Marie-Paule Lefranc ◽  
...  

In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.


2021 ◽  
Author(s):  
Daniel Dorey-Robinson ◽  
Giuseppe Maccari ◽  
Richard Borne ◽  
John A. Hammond

AbstractThe advent and continual improvement of high-throughput sequencing technologies has made immunoglobulin repertoire sequencing accessible and informative regardless of study species. However, to fully map changes in polyclonal dynamics, precise annotation of these constantly rearranging genes is pivotal. For this reason, data agnostic tools able to learn from presented data are required. Most sequence annotation tools are designed primarily for use with human and mouse antibody sequences which use databases with fixed species lists, applying very specific assumptions which select against unique structural characteristics. We present IgMAT, which utilises a reduced amino acid alphabet, incorporates multiple HMM alignments into a single consensus and enables the incorporation of user defined databases to better represent their species of interest.Availability and implementationIgMAT has been developed as a python module, and is available on GitHub (https://github.com/TPI-Immunogenetics/igmat) for download under GPLv3 license.Supplementary informationModel Breakdowns


2021 ◽  
Author(s):  
Evan S Walsh ◽  
Tammy Tollison ◽  
Hayden Brochu ◽  
Brian Shaw ◽  
Kayliegh Diveley ◽  
...  

Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired heavy- and light- chains of immunoglobulins (Ig) and VDJ- and VJ- chains of T cell receptors (TCR) from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. Here we employed custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single cell immune repertoire profiling. Using these rhesus specific assays, we sequenced Ig and TCR repertoires in over 60,000 cells from cryopreserved rhesus PBMC, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single cell level.


Sign in / Sign up

Export Citation Format

Share Document