scholarly journals Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia

2021 ◽  
Vol 12 ◽  
Author(s):  
Julien M. P. Grenier ◽  
Céline Testut ◽  
Cyril Fauriat ◽  
Stéphane J. C. Mancini ◽  
Michel Aurrand-Lions

In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC’s homeostasis regulation. Since the 90’s, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4119-4119
Author(s):  
Qian Sun ◽  
Chi-Chiu So ◽  
Sze-Fai Yip ◽  
Thomas S.K. Wan ◽  
Edmond Shiu Kwan Ma ◽  
...  

Abstract Chronic myelomonocytic leukaemia (CMML) is a clonal bone marrow stem cell disorder based on the presence of trilineage involvement, the association of myelodysplastic and myeloproliferative features and its ability to transform into acute myeloid leukaemia. The objectives of our study are to identify the cell population and its functional characteristics involved in evolution from CMML phase to acute myeloid leukaemia. We analysed Lin−CD34+ stem/progenitor population and performed cell proliferation, apoptotic assays, self-renewal ability and differentiation potential studies in purified populations of Lin−CD34+CD38− stem cells and Lin−CD34+CD38+ committed progenitors from peripheral blood of 16 patients with CMML and in six of the 16 after transformation to acute myeloid leukaemia (AML-t). We observed an expansion of the stem cell/progenitor pool (Lin−CD34+ cells) in AML-t comprising mainly of Lin−CD34+CD38+ committed progenitors within Lin−CD34+ cells. The Lin−CD34+CD38+ committed progenitors displayed highly proliferative activity in CMML and in AML-t; and additionally acquired resistance to apotosis and myeloid colony self-renewing ability in AML-t. Impairment of dendritic cell (DC) differentiation was observed with complete block in AML-t. Our findings suggest Lin−CD34+CD38+ committed progenitors instead of Lin−CD34+CD38− stem cells could be the target(s) of secondary genetic lesions underpinning progression from CMML to AML. These results have implications for the further study of the biology of leukaemic transformation and the design of new strategies for the effective treatment of CMML.


2007 ◽  
Vol 3 (3) ◽  
pp. 363-377 ◽  
Author(s):  
Donal P McLornan ◽  
Mary Frances McMullin ◽  
Patrick Johnston ◽  
Daniel B Longley

Author(s):  
Henrik Hasle ◽  
Charlotte M. Niemeyer

Myeloid malignancies in children are divided into acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS), juvenile myelomonocytic leukaemia (JMML), and the myeloid leukaemia of Down syndrome (ML-DS). Predisposing genetic conditions are common in MDS. Differentiating MDS from inherited bone marrow failure or AML may be challenging. Therapy consists of observation, immunosuppression, or stem-cell transplantation (SCT). Germline and somatic mutations deregulating the Ras/MAPK signal pathways are key initiating events in JMML. Genetics in JMML defines clinically relevant subgroups and indications for SCT. ML-DS presents with unique clinical characteristics and responds favourably to reduced doses of AML chemotherapy; however, relapse is often refractory to therapy.


2020 ◽  
Vol 190 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Diana Hanekamp ◽  
Alexander N. Snel ◽  
Angèle Kelder ◽  
Willemijn J. Scholten ◽  
Naeem Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document