scholarly journals Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia

2018 ◽  
Vol 12 (6) ◽  
pp. 279-288 ◽  
Author(s):  
Abdelhafid Zenati ◽  
Messaoud Chakir ◽  
Mohamed Tadjine
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4119-4119
Author(s):  
Qian Sun ◽  
Chi-Chiu So ◽  
Sze-Fai Yip ◽  
Thomas S.K. Wan ◽  
Edmond Shiu Kwan Ma ◽  
...  

Abstract Chronic myelomonocytic leukaemia (CMML) is a clonal bone marrow stem cell disorder based on the presence of trilineage involvement, the association of myelodysplastic and myeloproliferative features and its ability to transform into acute myeloid leukaemia. The objectives of our study are to identify the cell population and its functional characteristics involved in evolution from CMML phase to acute myeloid leukaemia. We analysed Lin−CD34+ stem/progenitor population and performed cell proliferation, apoptotic assays, self-renewal ability and differentiation potential studies in purified populations of Lin−CD34+CD38− stem cells and Lin−CD34+CD38+ committed progenitors from peripheral blood of 16 patients with CMML and in six of the 16 after transformation to acute myeloid leukaemia (AML-t). We observed an expansion of the stem cell/progenitor pool (Lin−CD34+ cells) in AML-t comprising mainly of Lin−CD34+CD38+ committed progenitors within Lin−CD34+ cells. The Lin−CD34+CD38+ committed progenitors displayed highly proliferative activity in CMML and in AML-t; and additionally acquired resistance to apotosis and myeloid colony self-renewing ability in AML-t. Impairment of dendritic cell (DC) differentiation was observed with complete block in AML-t. Our findings suggest Lin−CD34+CD38+ committed progenitors instead of Lin−CD34+CD38− stem cells could be the target(s) of secondary genetic lesions underpinning progression from CMML to AML. These results have implications for the further study of the biology of leukaemic transformation and the design of new strategies for the effective treatment of CMML.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julien M. P. Grenier ◽  
Céline Testut ◽  
Cyril Fauriat ◽  
Stéphane J. C. Mancini ◽  
Michel Aurrand-Lions

In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC’s homeostasis regulation. Since the 90’s, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.


2019 ◽  
Vol 26 (28) ◽  
pp. 5278-5292 ◽  
Author(s):  
Aditi Singh ◽  
Nikolai Norevik Myklebust ◽  
Sarah Marie Vie Furevik ◽  
Ragnhild Haugse ◽  
Lars Herfindal

:Acute Myeloid Leukaemia (AML) is the neoplastic transformation of Hematopoietic Stem Cells (HSC) and relapsed disease is a major challenge in the treatment. Despite technological advances in the field of medicine and our heightened knowledge regarding the pathogenesis of AML, the initial therapy of “7+3” Cytarabine and Daunorubicin has remained mainly unchanged since 1973. AML is a disease of the elderly, and increased morbidity in this patient group does not allow the full use of the treatment and drug-resistant relapse is common.:Nanocarriers are drug-delivery systems that can be used to transport drugs to the bone marrow and target Leukemic Stem Cells (LSC), conferring less side-effects compared to the free-drug alternative. Nanocarriers also can be used to favour the transport of drugs that otherwise would not have been used clinically due to toxicity and poor efficacy. Liposomes are a type of nanocarrier that can be used as a dedicated drug delivery system, which can also have active ligands on the surface in order to interact with antigens on the target cells or tissues. In addition to using small molecules, it is possible to attach antibodies to the liposome surface, generating so-called immunoliposomes. By using immunoliposomes as a drug-delivery system, it is possible to minimize the toxic side effects caused by the chemotherapeutic drug on healthy organs, and at the same time direct the drugs towards the remaining AML blasts and stem cells.:This article aims to explore the possibilities of using immunoliposomes as a drug carrier in AML therapy. Emphasis will be on possible target molecules on the AML cells, leukaemic stem cells, as well as bone marrow constituents relevant to AML therapy. Further, some conditions and precautions that must be met for immunoliposomes to be used in AML therapy will be discussed.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 620-620 ◽  
Author(s):  
Ingrid G Winkler ◽  
Valerie Barbier ◽  
Diwakar R Pattabiraman ◽  
Thomas J Gonda ◽  
John L. Magnani ◽  
...  

Abstract We recently reported that vascular adhesion molecule E-selectin is a key component of the bone marrow vascular niche, ‘awakening’ otherwise dormant Haematopoietic Stem Cells (HSC) (Winkler et al., Nat Med 2012). Following cytotoxic chemotherapy or radiation injury, E-selectin expression in the bone marrow increases ~10 to 20-fold during the recovery phase, at a time when HSC must cycle to replenish the blood and immune systems. When E-selectin is absent (in gene deleted mice) or E-selectin is therapeutically blocked using the small molecule glycomimetic antagonist GMI-1271, a greater proportion of HSC return to quiescence following radiation or chemotherapy. We now report cell surface E-selectin to be also upregulated 5 to 10-fold on the BM vasculature in mice with acute myeloid leukaemia (AML). This raises the interesting question: how do AML leukaemia stem cells (LSC) respond to E-selectin at the vascular niche? Using models of murine AML generated by retroviral transduction of the MLL-AF9 fusion oncogene into HSC, we found leukemic blasts rapidly upregulate E-selectin binding potential upon oncogenic transformation. In fact targeted disruption of these E-selectin-mediated interactions by administration of GMI-1271 injection distrupts adhesion and localization of AML cells and was sufficient to continually mobilise leukaemic blasts into the blood for at least 24 hours after a single injection at 40 mg/kg, suggesting that E-selectin-mediated interactions play a role in retaining LSC within BM niches. We next queried whether E-selectin-mediated signalling may help promote LSC survival following therapy. To test this, cohorts of 20 wildtype or 20 E-selectin knock-out mice were transplanted with the same AML cells, then 4 weeks later, half were treated with high dose cytarabine (2 x 900mg/kg at 12hour interval) while the other half remained untreated. At 24 hours after the first cytarabine injection, BM cells were harvested to measure numbers of surviving functional LSC by limiting-dilution transplantation assays in irradiated wild-type syngenic recipients and the proportion of these recipients that developed leukemia was used to calculate the original number of surviving LSC by Poisson’s distribution. We found that although the absence of E-selectin had no effect on total LSC numbers per femur, the absence of E-selectin dramatically increased sensitivity of LSC to cytarabine treatment (20-fold). These results indeed suggest that E-selectin is a key vascular niche component mediating LSC chemoresistance. Our data are also consistent with previous xenograft models in immune-deficient mice showing that the few human CD34+ AML LSC that survived chemotherapy, were observed clustered around endosteal vascular endothelium in recipient mice (Ishikawa et al., Nat BioTechnol 2007; Ninomiya et al., Leukemia 2007) where E-selectin is expressed. In summary our data confirm that niche factors alone can strongly influence LSC sensitivity to chemotherapy, and suggest a chemoprotective role for the vascular adhesion molecule E-selectin which is upregulated in the bone marrow of leukaemic mice, Taken together, these data identify E-selectin as a novel therapeutic target for the treatment of AML leukemic stem cells in that in vivo inhibition by the small molecule glycomimetic E-selectin antagonist GMI-1271 may improve chemosensitivity. Disclosures Winkler: FibroGen Inc.: Research Funding. Magnani:GlycoMimetics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Author(s):  
Hyunsoo Cho ◽  
Ji Eun Jang ◽  
Ju-In Eom ◽  
Hoi-Kyung Jeung ◽  
Haerim Chung ◽  
...  

Abstract BackgroundThe evasion of apoptosis through dysregulated Bcl-2 family members is a hallmark of leukaemia stem cells (LSCs) in acute myeloid leukaemia (AML). Therefore, targeting Bcl-2 with venetoclax has been suggested as an attractive strategy for inducing apoptosis in AML LSCs. However, the selective inhibition of Bcl-2 in AML often leads to upregulation of Mcl-1, another dominant anti-apoptotic Bcl-2 family protein conferring venetoclax resistance.MethodsWe assessed the combined effect of venetoclax and arsenic trioxide (ATO) on leukaemic cell viability, apoptosis, combination index, and cell cycle in the human LSC-like KG1 and KG1a cells. The synergistic effect of venetoclax and ATO on apoptosis was also examined in primary CD34+ and CD34+CD38- LSCs from the bone marrow (BM) of AML patients, and compared with those from healthy donors.ResultsVenetoclax efficiently impaired cell viability and dose-dependently promoted apoptosis when combined with ATO; their synergism was aptly represented by the combination index. The combination of venetoclax and ATO impaired cell cycle progression by restricting cells within the sub-G1 phase and facilitating caspase-dependent apoptotic cell death associated with the loss of mitochondrial membrane potential, while sparing healthy BM haematopoietic stem cells. Mechanistically, ATO mitigated venetoclax-induced upregulation of Mcl-1 by the inhibition of AKT and ERK, along with activation of GSK-3β. This led to the Mcl-1 destabilisation, triggering Noxa and Bim to facilitate apoptosis and the consequent activation of the apoptosis executioner protein Bak. Moreover, the combination promoted phosphorylation of ATM, Chk2, p38, and H2AX, indicating an active DNA damage response.ConclusionsOur findings demonstrate the synergistic, preferential antileukaemic effects of venetoclax and ATO on LSCs, providing a rationale for preclinical and clinical trials by combining these agents already being used in clinical practice to treat acute leukaemia.


2017 ◽  
Vol 138 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Adhra Al-Mawali ◽  
Avinash Daniel Pinto ◽  
Shoaib Al-Zadjali

Background/Aims: In CD34-positive acute myeloid leukaemia (AML), the leukaemia-initiating event likely takes place in the CD34+CD38- cell compartment. CD123 has been shown to be a unique marker of leukaemic stem cells within the CD34+CD38- compartment. The aim of this study was to identify the percentage of CD34+CD38-CD123+ cells in AML blasts, AML CD34+CD38- stem cells, and normal and regenerating bone marrow CD34+CD38- stem cells from non-myeloid malignancies. Methods: Thirty-eight adult de novo AML patients with intention to treat were enrolled after the application of inclusion criteria from February 2012 to February 2017. The percentage of the CD34+CD38-CD123+ phenotype in the blast population at diagnosis was determined using a CD45-gating strategy and CD34+ backgating by flow cytometry. We studied the CD34+CD38-CD123+ fraction in AML blasts at diagnosis, and its utility as a unique phenotype for minimal residual disease (MRD) of AML patients. Results: CD123+ cells were present in 97% of AML blasts in patients at diagnosis (median 90%; range 21-99%). CD123+ cells were also present in 97% of the CD34+CD38- compartment (median 0.8164%, range 0.0262-39.7%). Interestingly, CD123 was not present in normal and regenerating CD34+CD38- bone marrow stem cells (range 0.002- 0.067 and 0.004-0.086, respectively). Conclusion: The CD34+CD38-CD123+ phenotype is present in virtually all AML blasts and it may be used as a unique single phenotype for MRD detection in AML patients.


2019 ◽  
Vol 187 (2) ◽  
pp. 144-156
Author(s):  
Peter Hokland ◽  
Petter S. Woll ◽  
Marcus C. Hansen ◽  
Marie Bill

Sign in / Sign up

Export Citation Format

Share Document