scholarly journals IL-1β and the Intestinal Epithelial Tight Junction Barrier

2021 ◽  
Vol 12 ◽  
Author(s):  
Lauren W. Kaminsky ◽  
Rana Al-Sadi ◽  
Thomas Y. Ma

The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn’s disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.

2005 ◽  
Vol 288 (3) ◽  
pp. G422-G430 ◽  
Author(s):  
Thomas Y. Ma ◽  
Michel A. Boivin ◽  
Dongmei Ye ◽  
Ali Pedram ◽  
Hamid M. Said

TNF-α plays a central role in the intestinal inflammation of various inflammatory disorders including Crohn's disease (CD). TNF-α-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed as one of the proinflammatory mechanisms contributing to the intestinal inflammation. The intracellular mechanisms involved in the TNF-α-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to investigate the possibility that the TNF-α-induced increase in intestinal epithelial TJ permeability was regulated by myosin light-chain kinase (MLCK) protein expression, using an in vitro intestinal epithelial model system consisting of the filter-grown Caco-2 intestinal epithelial monolayers. TNF-α (10 ng/ml) produced a time-dependent increase in Caco-2 MLCK expression. The TNF-α increase in MLCK protein expression paralleled the increase in Caco-2 TJ permeability, and the inhibition of the TNF-α-induced MLCK expression (by cycloheximide) prevented the increase in Caco-2 TJ permeability, suggesting that MLCK expression may be required for the increase in Caco-2 TJ permeability. The TNF-α increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression but not an alteration in MLCK protein degradation. Actinomycin-D prevented the TNF-α increase in MLCK mRNA expression and the subsequent increase in MLCK protein expression and Caco-2 TJ permeability, suggesting that the increase in MLCK mRNA transcription led to the increase in MLCK expression. The TNF-α increase in MLCK protein expression was also associated with an increase in Caco-2 MLCK activity. The cycloheximide inhibition of MLCK protein expression prevented the TNF-α increase in MLCK activity and Caco-2 TJ permeability. Moreover, inhibitors of MLCK, Mg2+-myosin ATPase, and metabolic energy prevented the TNF-α increase in Caco-2 TJ permeability, suggesting that the increase in MLCK activity was required for the TNF-α-induced opening of the Caco-2 TJ barrier. In conclusion, our results indicate for the first time that 1) the TNF-α increase in Caco-2 TJ permeability was mediated by an increase in MLCK protein expression, 2) the increase in MLCK protein expression was regulated by an increase in MLCK mRNA transcription, and 3) the increase in Caco-2 TJ permeability required MLCK protein expression-dependent increase in MLCK activity.


2006 ◽  
Vol 290 (3) ◽  
pp. G496-G504 ◽  
Author(s):  
Dongmei Ye ◽  
Iris Ma ◽  
Thomas Y. Ma

A TNF-α-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed to be an important proinflammatory mechanism contributing to intestinal inflammation in Crohn's disease and other inflammatory conditions. Previous studies from our laboratory suggested that the TNF-α-induced increase in intestinal TJ permeability was mediated by an increase in myosin light chain kinase (MLCK) protein expression. However, the molecular mechanisms that mediate the TNF-α increase in intestinal TJ permeability and MLCK protein expression remain unknown. The purpose of this study was to delineate the intracellular and molecular mechanisms that mediate the TNF-α-induced increase in intestinal TJ permeability; using an in vitro intestinal epithelial model system consisting of filter-grown Caco-2 intestinal epithelial monolayers. To examine the molecular mechanisms involved in the TNF-α regulation of intestinal TJ barrier, we identified and cloned for the first time a functionally active MLCK promoter region. TNF-α treatment of filter-grown Caco-2 monolayers transfected with plasmid vector containing the MLCK promoter region produced an increase in MLCK promoter activity and MLCK transcription. The TNF-α-induced increase in MLCK transcription corresponded to a sequential increase in MLCK protein expression, MLCK activity, and Caco-2 TJ permeability. The TNF-α-induced increase in MLCK promoter activity was mediated by NF-κB activation, and the inhibition of NF-κB activation prevented the TNF-α-induced increase in promoter activity and the subsequent increase in MLCK protein expression and Caco-2 TJ permeability. The TNF-α-induced activation of MLCK promoter was mediated by binding of the activated NF-κB p50/p65 dimer to the downstream κB binding site (−84 to −75) on the MLCK promoter region; deletion of the κB binding site prevented the TNF-α increase in promoter activity. Additionally, siRNA silencing of NF-κB p65 also prevented the TNF-α increase in MLCK promoter activity. In conclusion, our findings indicated that the TNF-α-induced increase in intestinal epithelial TJ permeability was mediated by NF-κB p50/p65 binding and activation of the MLCK promoter. NF-κB p50/p65 activation of the MLCK promoter then leads to a stepwise increase in MLCK transcription, expression and activity, and MLCK-mediated opening of the intestinal TJ barrier.


2019 ◽  
Vol 116 (42) ◽  
pp. 21140-21149 ◽  
Author(s):  
Se Kyu Oh ◽  
Dongha Kim ◽  
Kyeongkyu Kim ◽  
Kyungjin Boo ◽  
Young Suk Yu ◽  
...  

Retinoic acid-related orphan receptor α (RORα) functions as a transcription factor for various biological processes, including circadian rhythm, cancer, and metabolism. Here, we generate intestinal epithelial cell (IEC)-specific RORα-deficient (RORαΔIEC) mice and find that RORα is crucial for maintaining intestinal homeostasis by attenuating nuclear factor κB (NF-κB) transcriptional activity. RORαΔIEC mice exhibit excessive intestinal inflammation and highly activated inflammatory responses in the dextran sulfate sodium (DSS) mouse colitis model. Transcriptome analysis reveals that deletion of RORα leads to up-regulation of NF-κB target genes in IECs. Chromatin immunoprecipitation analysis reveals corecruitment of RORα and histone deacetylase 3 (HDAC3) on NF-κB target promoters and subsequent dismissal of CREB binding protein (CBP) and bromodomain-containing protein 4 (BRD4) for transcriptional repression. Together, we demonstrate that RORα/HDAC3-mediated attenuation of NF-κB signaling controls the balance of inflammatory responses, and therapeutic strategies targeting this epigenetic regulation could be beneficial to the treatment of chronic inflammatory diseases, including inflammatory bowel disease (IBD).


2013 ◽  
Vol 305 (10) ◽  
pp. G740-G748 ◽  
Author(s):  
Mihaela Pruteanu ◽  
Fergus Shanahan

The enteric microbiota contributes to the pathogenesis of inflammatory bowel disease, but the pathways involved and bacterial participants may vary in different hosts. We previously reported that some components of the human commensal microbiota, particularly Clostridium perfringens ( C. perfringens), have the proteolytic capacity for host matrix degradation and reduce transepithelial resistance. Here, we examined the C. perfringens-derived proteolytic activity against epithelial tight junction proteins using human intestinal epithelial cell lines. We showed that the protein levels of E-cadherin, occludin, and junctional adhesion molecule 1 decrease in colonic cells treated with C. perfringens culture supernatant. E-cadherin ectodomain shedding in C. perfringens-stimulated intestinal epithelial cells was detected with antibodies against the extracellular domain of E-cadherin, and we demonstrate that this process occurs in a time- and dose-dependent manner. In addition, we showed that the filtered sterile culture supernatant of C. perfringens has no cytotoxic activity on the human intestinal cells at the concentrations used in this study. The direct cleavage of E-cadherin by the proteases from the C. perfringens culture supernatant was confirmed by C. perfringens supernatant-induced in vitro degradation of the human recombinant E-cadherin. We conclude that C. perfringens culture supernatant mediates digestion of epithelial cell junctional proteins, which is likely to enable access to the extracellular matrix components by the paracellular pathway.


Sign in / Sign up

Export Citation Format

Share Document