scholarly journals ERAP1 Controls the Interaction of the Inhibitory Receptor KIR3DL1 With HLA-B51:01 by Affecting Natural Killer Cell Function

2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia D’Amico ◽  
Valerio D’Alicandro ◽  
Mirco Compagnone ◽  
Patrizia Tempora ◽  
Giusy Guida ◽  
...  

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-25-SCI-25
Author(s):  
Peter Parham

Abstract Natural killer (NK) cells are phenotypically diverse lymphocytes that contribute to innate immunity, adaptive immunity and placental reproduction. Unlike B and T cells, NK cells do not use rearranging genes to make diverse antigen receptors that are clonally expressed. Instead, NK cells express diverse combinations of a variety of receptors that are encoded by conventional non-rearranging genes. Several of these receptors are specific for conserved and variable determinants of major histocompatibility complex (MHC) class I molecules. In humans, the killer-cell immunoglobulin-like receptors (KIR) are a diverse and polymorphic family of NK-cell receptors that recognize determinants of human leukocyte antigen (HLA)-A, B and C, the polymorphic human MHC class I molecules. HLA-A, B and C are the most polymorphic of human genes, and they correlate with susceptibility to a wide range of diseases and clinical outcomes, including allogeneic hematopoietic cell transplantation (HCT). During NK-cell development, interactions between epitopes of HLA class I and KIR educate the NK cells to recognize the normal expression of these epitopes on healthy cells, and to respond to unhealthy cells in which that expression is perturbed. In the context of HCT, certain types of HLA class I mismatch enable donor-derived NK cells to make an alloreactive and beneficial graft-versus-leukemia response. Although it is likely that all placental mammals have NK cells, only a small minority of these species has a diverse KIR family like that in humans. These comprise the simian primates: New World monkeys, Old World monkeys and the great apes. Under pressure from diverse and rapidly evolving pathogens, both the MHC class I and KIR gene families have been driven to evolve rapidly. Consequently, much of their character is species-specific. This is especially true for the human KIR gene family, which is qualitatively different from that of our closest relatives, the chimpanzees. Whereas chimpanzee KIR haplotype diversity represents variations on a theme of genes encoding robust MHC class I receptors, humans have an even balance between group A KIR haplotypes encoding robust HLA class I receptors and group B KIR haplotypes encoding receptors that, to varying degree, have been subject to natural selection for reduced functional recognition of HLA class I. A balance of A and B is present in all human populations and thus appears essential for the long-term survival and competitiveness of human communities. Whereas the A KIR haplotypes correlate with successful defense against viral infection, maternal B KIR haplotypes correlate with reproductive success and donor B KIR haplotypes improve the outcome of allogeneic HCT as therapy for acute myeloid leukemia. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 184 (2) ◽  
pp. 789-794 ◽  
Author(s):  
A D'Andrea ◽  
C Chang ◽  
J H Phillips ◽  
L L Lanier

The killer cell inhibitory receptors (KIRs) are surface glycoproteins expressed by natural killer (NK) and T cells that specifically recognize defined groups of polymorphic human histocompatibility leukocyte antigen (HLA) class I molecules. Interactions between KIRs on NK or T cells and major histocompatibility complex (MHC) class I molecules on potential target cells inhibit cell-mediated cytotoxicity, presumably by delivering a negative signal preventing lymphocyte activation. In this study we examined whether KIRs also regulate cytokine production induced in response to T cell receptor-dependent T cell activation. CD4+ and CD8+ T cell clones were stimulated by bacterial superantigens in the presence or absence of monoclonal antibodies (mAbs) against the KIR NKB1 or MHC class I molecules, and production of tumor necrosis factor alpha and interferon gamma was evaluated. When bacterial superantigen was presented by an autologous antigen-presenting cell (APC) to a KIR+ T cell clone, cytokine production was always enhanced in the presence of anti-MHC class I mAb. Similarly, anti-KIR mAb also augmented cytokine production, provided that the APC expressed a HLA class I allele recognized by the KIR. These results suggest that recognition of autologous MHC class I molecules by KIR+ T cells provides a regulatory mechanism acting to modulate the potency of their responses to antigenic challenge.


2004 ◽  
Vol 76 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Gonzalo Rubio ◽  
Xavier Férez ◽  
María Sánchez-Campillo ◽  
Jesús Gálvez ◽  
Salvador Martí ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Jens Kieckbusch ◽  
Louise M. Gaynor ◽  
Ashley Moffett ◽  
Francesco Colucci

Abstract NK cells express variable receptors that engage polymorphic MHC class I molecules and regulate their function. Maternal NK cells accumulate at the maternal-fetal interface and can interact with MHC class I molecules from both parents. The relative contribution of the two sets of parental MHC molecules to uterine NK cell function is unknown. Here we show that, in mice, maternal and not paternal MHC educates uterine NK cells to mature and acquire functional competence. The presence of an additional MHC allele that binds more inhibitory than activating NK cell receptors results in suppressed NK cell function, compromised uterine arterial remodelling and reduced fetal growth. Notably, reduced fetal growth occurs irrespectively of the parental origin of the inhibitory MHC. This provides biological evidence for the impact of MHC-dependent NK inhibition as a risk factor for human pregnancy-related complications associated with impaired arterial remodelling.


2013 ◽  
Vol 2 (3) ◽  
pp. e23336 ◽  
Author(s):  
Mark J Smyth ◽  
Lucy C. Sullivan ◽  
Andrew G. Brooks ◽  
Daniel M. Andrews

2012 ◽  
Vol 367 (1590) ◽  
pp. 800-811 ◽  
Author(s):  
Peter Parham ◽  
Paul J. Norman ◽  
Laurent Abi-Rached ◽  
Lisbeth A. Guethlein

In placental mammals, natural killer (NK) cells are a population of lymphocytes that make unique contributions to immune defence and reproduction, functions essential for survival of individuals, populations and species. Modulating these functions are conserved and variable NK-cell receptors that recognize epitopes of major histocompatibility complex (MHC) class I molecules. In humans, for example, recognition of human leucocyte antigen (HLA)-E by the CD94:NKG2A receptor is conserved, whereas recognition of HLA-A, B and C by the killer cell immunoglobulin-like receptors (KIRs) is diversified. Competing demands of the immune and reproductive systems, and of T-cell and NK-cell immunity—combined with the segregation on different chromosomes of variable NK-cell receptors and their MHC class I ligands—drive an unusually rapid evolution that has resulted in unprecedented levels of species specificity, as first appreciated from comparison of mice and humans. Counterparts to human KIR are present only in simian primates. Observed in these species is the coevolution of KIR and the four MHC class I epitopes to which human KIR recognition is restricted. Unique to hominids is the emergence of the MHC-C locus as a supplier of specialized and superior ligands for KIR. This evolutionary trend is most highly elaborated in the chimpanzee. Unique to the human KIR locus are two groups of KIR haplotypes that are present in all human populations and subject to balancing selection. Group A KIR haplotypes resemble chimpanzee KIR haplotypes and are enriched for genes encoding KIR that bind HLA class I, whereas group B KIR haplotypes are enriched for genes encoding receptors with diminished capacity to bind HLA class I. Correlating with their balance in human populations, B haplotypes favour reproductive success, whereas A haplotypes favour successful immune defence. Evolution of the B KIR haplotypes is thus unique to the human species.


Sign in / Sign up

Export Citation Format

Share Document