scholarly journals Intermittent Hypoxia and Prolonged Suboxia Measured In situ in a Marine Sponge

2016 ◽  
Vol 3 ◽  
Author(s):  
Adi Lavy ◽  
Ray Keren ◽  
Gitai Yahel ◽  
Micha Ilan
Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 97
Author(s):  
Shamsunnahar Khushi ◽  
Angela A. Salim ◽  
Ahmed H. Elbanna ◽  
Laizuman Nahar ◽  
Robert J. Capon

Thorectandra choanoides (CMB-01889) was prioritized as a source of promising new chemistry from a library of 960 southern Australian marine sponge extracts, using a global natural products social (GNPS) molecular networking approach. The sponge was collected at a depth of 45 m. Chemical fractionation followed by detailed spectroscopic analysis led to the discovery of a new tryptophan-derived alkaloid, thorectandrin A (1), with the GNPS cluster revealing a halo of related alkaloids 1a–1n. In considering biosynthetic origins, we propose that Thorectandrachoanoides (CMB-01889) produces four well-known alkaloids, 6-bromo-1′,8-dihydroaplysinopsin (2), 6-bromoaplysinopsin (3), aplysinopsin (4), and 1′,8-dihydroaplysinopsin (10), all of which are susceptible to processing by a putative indoleamine 2,3-dioxygenase-like (IDO) enzyme to 1a–1n. Where the 1′,8-dihydroalkaloids 2 and 10 are fully transformed to stable ring-opened thorectandrins 1 and 1a–1b, and 1h–1j, respectively, the conjugated precursors 3 and 4 are transformed to highly reactive Michael acceptors that during extraction and handling undergo complete transformation to artifacts 1c–1g, and 1k–1n, respectively. Knowledge of the susceptibility of aplysinopsins as substrates for IDOs, and the relative reactivity of Michael acceptor transformation products, informs our understanding of the pharmaceutical potential of this vintage marine pharmacophore. For example, the cancer tissue specificity of IDOs could be exploited for an immunotherapeutic response, with aplysinopsins transforming in situ to Michael acceptor thorectandrins, which covalently bind and inhibit the enzyme.


1999 ◽  
Vol 134 (3) ◽  
pp. 461-470 ◽  
Author(s):  
A. B. Friedrich ◽  
H. Merkert ◽  
T. Fendert ◽  
J. Hacker ◽  
P. Proksch ◽  
...  

2018 ◽  
Vol 69 (11) ◽  
pp. 1784
Author(s):  
P. Nemoy ◽  
E. Spanier ◽  
N. Kashtan ◽  
A. Israel ◽  
D. L. Angel

This study examined the effects of environmental conditions on the distribution of marine sponges. We measured the abundance of the sponge Batzella inops (Topsent, 1891) in two contrasting habitats: inside submerged caves and on the surfaces of submerged boulders. We hypothesised that caves are a preferred habitat for B. inops over the boulder surfaces, and tested this by descriptive (quadrate sampling) and manipulative (reciprocal transplantation) experiments. In addition, we tested B. inops in situ for the presence of photosynthetic activity. We found that B. inops is more abundant inside the caves (mean ± s.e.m., 1.2 ± 0.6individualsm–2) than on the outside boulder surfaces (0.15 ± 0.19individualsm–2). We also detected photosynthetic activity in B. inops in both habitats. The results of transplantation experiments suggested that the sponge prefers the transfer from inside to outside the cave rather than vice versa. Therefore, we conclude that although B. inops is more abundant in sheltered habitats, such as submerged caves, adult individuals of this sponge can survive transfer to exposed conditions. Altogether, our findings point to the plasticity of B. inops habitat preferences and may aid further research into conservation or mariculture of this and possibly other sponge species.


2012 ◽  
Vol 11 (4) ◽  
pp. 953-956
Author(s):  
Paul W. Baker ◽  
Alan D. W. Dobson ◽  
Julian Marchesi

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e100474 ◽  
Author(s):  
James J. La Clair ◽  
Steven T. Loveridge ◽  
Karen Tenney ◽  
Mark O'Neil–Johnson ◽  
Eli Chapman ◽  
...  

2010 ◽  
Vol 13 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Nicole S. Webster ◽  
Rose E. Cobb ◽  
Rochelle Soo ◽  
Shelley L. Anthony ◽  
Christopher N. Battershill ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document