scholarly journals Cetacean Strandings From Space: Challenges and Opportunities of Very High Resolution Satellites for the Remote Monitoring of Cetacean Mass Strandings

2021 ◽  
Vol 8 ◽  
Author(s):  
Penny J. Clarke ◽  
Hannah C. Cubaynes ◽  
Karen A. Stockin ◽  
Carlos Olavarría ◽  
Asha de Vos ◽  
...  

The study of cetacean strandings was globally recognised as a priority topic at the 2019 World Marine Mammal Conference, in recognition of its importance for understanding the threats to cetacean communities and, more broadly, the threats to ecosystem and human health. Rising multifaceted anthropogenic and environmental threats across the globe, as well as whale population recovery from exploitation in some areas, are likely to coincide with an increase in reported strandings. However, the current methods to monitor strandings are inherently biased towards populated coastlines, highlighting the need for additional surveying tools in remote regions. Very High Resolution (VHR) satellite imagery offers the prospect of upscaling monitoring of mass strandings in minimally populated/unpopulated and inaccessible areas, over broad spatial and temporal scales, supporting and informing intervention on the ground, and can be used to retrospectively analyse historical stranding events. Here we (1) compile global strandings information to identify the current data gaps; (2) discuss the opportunities and challenges of using VHR satellite imagery to monitor strandings using the case study of the largest known baleen whale mass stranding event (3) consider where satellites hold the greatest potential for monitoring strandings remotely and; (4) outline a roadmap for satellite monitoring. To utilise this platform to monitor mass strandings over global scales, considerable technical, practical and environmental challenges need to be addressed and there needs to be inclusivity in opportunity from the onset, through knowledge sharing and equality of access to imagery.

2011 ◽  
Vol 115 (4) ◽  
pp. 1025-1033 ◽  
Author(s):  
Gherardo Chirici ◽  
Diego Giuliarelli ◽  
Daniele Biscontini ◽  
Daniela Tonti ◽  
Walter Mattioli ◽  
...  

2014 ◽  
Vol 8 (3) ◽  
pp. 671 ◽  
Author(s):  
Els De Roeck ◽  
Frieke Van Coillie ◽  
Robert De Wulf ◽  
Karen Soenen ◽  
Johannes Charlier ◽  
...  

Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 118 ◽  
Author(s):  
Myroslava Lesiv ◽  
Linda See ◽  
Juan Laso Bayas ◽  
Tobias Sturn ◽  
Dmitry Schepaschenko ◽  
...  

Very high resolution (VHR) satellite imagery from Google Earth and Microsoft Bing Maps is increasingly being used in a variety of applications from computer sciences to arts and humanities. In the field of remote sensing, one use of this imagery is to create reference data sets through visual interpretation, e.g., to complement existing training data or to aid in the validation of land-cover products. Through new applications such as Collect Earth, this imagery is also being used for monitoring purposes in the form of statistical surveys obtained through visual interpretation. However, little is known about where VHR satellite imagery exists globally or the dates of the imagery. Here we present a global overview of the spatial and temporal distribution of VHR satellite imagery in Google Earth and Microsoft Bing Maps. The results show an uneven availability globally, with biases in certain areas such as the USA, Europe and India, and with clear discontinuities at political borders. We also show that the availability of VHR imagery is currently not adequate for monitoring protected areas and deforestation, but is better suited for monitoring changes in cropland or urban areas using visual interpretation.


2021 ◽  
Author(s):  
Geoffrey Bessardon ◽  
Emily Gleeson ◽  
Eoin Walsh

<p>An accurate representation of surface processes is essential for weather forecasting as it is where most of the thermal, turbulent and humidity exchanges occur. The Numerical Weather Prediction (NWP) system, to represent these exchanges, requires a land-cover classification map to calculate the surface parameters used in the turbulent, radiative, heat, and moisture fluxes estimations.</p><p>The land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAM NWP system for operational weather forecasting is ECOCLIMAP. ECOCLIMAP-SG (ECO-SG), the latest version of ECOCLIMAP, was evaluated over Ireland to prepare ECO-SG implementation in HARMONIE-AROME. This evaluation suggested that sparse urban areas are underestimated and instead appear as vegetation areas in ECO-SG [1], with an over-classification of grassland in place of sparse urban areas and other vegetation covers (Met Éireann internal communication). Some limitations in the performance of the current HARMONIE-AROME configuration attributed to surface processes and physiography issues are well-known [2]. This motivated work at Met Éireann to evaluate solutions to improve the land-cover map in HARMONIE-AROME.</p><p>In terms of accuracy, resolution, and the future production of time-varying land-cover map, the use of a convolutional neural network (CNN) to create a land-cover map using Sentinel-2 satellite imagery [3] over Estonia [4] presented better potential outcomes than the use of local datasets [5]. Consequently, this method was tested over Ireland and proven to be more accurate than ECO-SG for representing CORINE Primary and Secondary labels and at a higher resolution [5]. This work is a continuity of [5] focusing on 1. increasing the number of labels, 2. optimising the training procedure, 3. expanding the method for application to other HIRLAM countries and 4. implementation of the new land-cover map in HARMONIE-AROME.</p><p> </p><p>[1] Bessardon, G., Gleeson, E., (2019) Using the best available physiography to improve weather forecasts for Ireland. In EMS Annual Meeting.Retrieved fromhttps://presentations.copernicus.org/EMS2019-702_presentation.pdf</p><p>[2] Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,. . . Køltzow, M. Ø. (2017). The HARMONIE–AROME Model Configurationin the ALADIN–HIRLAM NWP System. Monthly Weather Review, 145(5),1919–1935.https://doi.org/10.1175/mwr-d-16-0417.1</p><p>[3] Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R., Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon, S., Oldeman,P., Palomba, M., and Pineiro, J.: Sentinel-2ESA’s Optical High-ResolutionMission for GMES Operational Services, ESA bulletin. Bulletin ASE. Euro-pean Space Agency, SP-1322,2012</p><p>[4] Ulmas, P. and Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification, pp. 1–11,http://arxiv.org/abs/2003.02899, 2020</p><p>[5] Walsh, E., Bessardon, G., Gleeson, E., and Ulmas, P. (2021). Using machine learning to produce a very high-resolution land-cover map for Ireland. Advances in Science and Research, (accepted for publication)</p>


Sign in / Sign up

Export Citation Format

Share Document