scholarly journals Geochemical and Microbial Signatures of Siboglinid Tubeworm Habitats at an Active Mud Volcano in the Canadian Beaufort Sea

2021 ◽  
Vol 8 ◽  
Author(s):  
Dong-Hun Lee ◽  
Jung-Hyun Kim ◽  
Yung Mi Lee ◽  
Ji-Hoon Kim ◽  
Young Keun Jin ◽  
...  

During the ARA08C expedition in 2017, sediment push cores were collected at an active mud volcano (420 m water depth) in the Canadian Beaufort Sea from two visually discriminative siboglinid tubeworm (ST) habitats that were colonized densely and less densely (ST1 and ST2, respectively). In this study, we investigated the biogeochemical and microbial community characteristics at ST1 by analyzing the geochemical properties, microbial lipids, and nucleic acid signatures, and comparing them with the data previously reported from ST2. The two ST sites showed distinct differences in vertical geochemical gradients [methane, sulfate, dissolved inorganic carbon (DIC), total organic carbon, and total sulfur], with a higher methane flux recorded at ST1 (0.05 mmol cm–2 y–1) than at ST2 (0.01 mmol cm–2 y–1). Notably, the δ13C values of DIC were more depleted at ST1 than at ST2, resulting in a higher proportion of DIC derived from the anaerobic oxidation of methane (AOM) at ST1 than at ST2. Moreover, both the ST1 and ST2 sites revealed the dominance of AOM-related lipid biomarkers (especially sn-2-hydroxyarchaeol), showing highly 13C-depleted values. The 16S rRNA analyses showed the presence of AOM-related archaea, predominantly anaerobic methanotrophic archaea (ANME)-3 at ST1 and ST2. Our results suggest that AOM-related byproducts (sulfide and DIC) potentially derived from ANME-3 were more abundant at ST1 than at ST2. This variation was attributed to the intensity and persistence of ascending methane. Therefore, our study suggests that AOM-derived byproducts are possibly an essential energy source for tubeworms during chemosynthetic metabolism, shaping different colony types on the seafloor.

2018 ◽  
Author(s):  
Dong-Hun Lee ◽  
Jung-Hyun Kim ◽  
Yung Mi Lee ◽  
Alina Stadnitskaia ◽  
Young Keun Jin ◽  
...  

Abstract. In this study, we report lipid biomarker patterns and phylogenetic identities of key microbes mediating anaerobic oxidation of methane (AOM) communities in active mud volcanos (MVs) on the continental slope of the Canadian Beaufort Sea. The enriched δ13C values of total organic carbon (TOC) as well as lipid biomarkers such as archaeol and biphytanes (BPs) relative to δ13CCH4 values suggested that the contribution of AOM-related biomass to sedimentary TOC was in general negligible in the Beaufort Sea MVs investigated. However, the δ13C values of sn-2- and sn-3-hydroxyarchaeol were more negative than CH4, indicating the presence of AOM communities, albeit in a small amount. The ratio of sn-2-hydroxyarchaeol to archaeol and the 16S rRNA results indeed indicated that archaea of the ANME-2c and ANME-3 clades were involved in AOM. Further studies are needed to investigate the diversity and distribution of AOM communities and to characterize their habitats in the uppermost surface sediments of Beaufort Sea MV systems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dong-Hun Lee ◽  
Yung Mi Lee ◽  
Jung-Hyun Kim ◽  
Young Keun Jin ◽  
Charles Paull ◽  
...  

AbstractSeveral mud volcanoes are active in the Canadian Beaufort Sea. In this study, we investigated vertical variations in methanotrophic communities in sediments of the mud volcano MV420 (420 m water depth) by analyzing geochemical properties, microbial lipids, and nucleic acid signatures. Three push cores were collected with a remotely operated vehicle from visually discriminative habitats that were devoid of megafauna and/microbial mats (DM) to the naked eye, covered with bacterial mats (BM), or colonized by siboglinid tubeworms (ST). All MV420 sites showed the presence of aerobic methane oxidation (MOx)- and anaerobic methane oxidation (AOM)-related lipid biomarkers (4α-methyl sterols and sn-2-hydroxyarchaeol, respectively), which were distinctly different in comparison with a reference site at which these compounds were not detected. Lipid biomarker results were in close agreement with 16S rRNA analyses, which revealed the presence of MOx-related bacteria (Methylococcales) and AOM-related archaea (ANME-2 and ANME-3) at the MV420 sites. 4α-methyl sterols derived from Methylococcales predominated in the surface layer at the BM site, which showed a moderate methane flux (0.04 mmol cm−2 y−1), while their occurrence was limited at the DM (0.06 mmol cm−2 y−1) and ST (0.01 mmol cm−2 y−1) sites. On the other hand, 13C-depleted sn-2-hydroxyarchaeol potentially derived from ANME-2 and/or ANME-3 was abundant in down-core sediments at the ST site. Our study indicates that a niche diversification within this mud volcano system has shaped distinct methanotrophic communities due to availability of electron acceptors in association with varying degrees of methane flux and bioirrigation activity.


2008 ◽  
Vol 10 (9) ◽  
pp. 2287-2298 ◽  
Author(s):  
Gunter Wegener ◽  
Helge Niemann ◽  
Marcus Elvert ◽  
Kai-Uwe Hinrichs ◽  
Antje Boetius

2017 ◽  
Author(s):  
Jacoba Mol ◽  
Helmuth Thomas ◽  
Paul G. Myers ◽  
Xianmin Hu ◽  
Alfonso Mucci

Abstract. The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries dissolved inorganic carbon (DIC) and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of inorganic carbon are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of waters with respect to aragonite and pH, is investigated. TA and the oxygen isotope ratio of water (δ18O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will respond to the aforementioned climate-induced changes.


2018 ◽  
Author(s):  
Haoyi Yao ◽  
Wei-Li Hong ◽  
Giuliana Panieri ◽  
Simone Sauer ◽  
Marta E. Torres ◽  
...  

Abstract. We report on a rare observation of a mini-fracture in near-surface sediments (30 cm below the seafloor) visualized using rotational scanning X-ray of a core recovered from the Lomvi pockmark, Vestnesa Ridge west of Svalbard (1200 m water depth). Porewater geochemistry and lipid biomarker signatures revealed clear differences in the geochemical and biogeochemical regimes of this core compared with two additional ones recovered from pockmarks sites at Vestnesa Ridge, which we attribute to differential methane transport mechanisms. In the sediments core featuring the shallow mini-fracture at pockmark Lomvi, we observed high concentrations of both methane and sulfate throughout the core in tandem with moderately elevated values for total alkalinity, 13C-depleted dissolved inorganic carbon (DIC), and 13C-depleted lipid biomarkers (diagnostic for the slow-growing microbial communities mediating the anaerobic oxidation of methane with sulfate – AOM). In another core recovered from the same pockmark about 80 m away from the fractured core, we observed complete sulfate depletion in the top centimeters of the sediment and much more pronounced signatures of AOM than in the fractured core. Our data indicate a gas advection-dominated transport mode in both cores facilitating methane migration into sulfate-rich surface sediments. However, the more moderate expression of AOM signals suggest a rather recent onset of gas migration at the site of the fractured core, while the geochemical evidence for a well-established AOM community at the second coring site at the Lomvi pockmark suggest that gas migration has been going on for a longer period of time. A third core recovered from Lunde pockmark was dominated by diffusive transport with only weak geochemical and biogeochemical evidence for AOM. Our study highlights that advective fluid and gas transport supported by mini-fractures can be important in modulating methane dynamics in surface sediments.


2019 ◽  
Author(s):  
Julia M. Kurth ◽  
Nadine T. Smit ◽  
Stefanie Berger ◽  
Stefan Schouten ◽  
Mike S.M. Jetten ◽  
...  

AbstractThe anaerobic oxidation of methane (AOM) is a microbial process present in marine and freshwater environments. AOM is important for reducing the emission of the second most important greenhouse gas methane. In marine environments anaerobic methanotrophic archaea (ANME) are involved in sulfate-reducing AOM. In contrast,Ca. Methanoperedens of the ANME-2d cluster carries out nitrate AOM in freshwater ecosystems. Despite the importance of those organisms for AOM in non-marine environments not much is known about their lipid composition or carbon sources. To close this gap, we analyzed the lipid composition of ANME-2d archaea and found that they mainly synthesize archaeol and hydroxyarchaeol as well as different (hydroxy-) glycerol dialkyl glycerol tetraethers, albeit in much lower amounts. Abundant lipid headgroups were dihexose, monomethyl-phosphatidyl ethanolamine and phosphatidyl hexose. Moreover, a monopentose was detected as a lipid headgroup which is rare among microorganisms. Batch incubations with13C labelled bicarbonate and methane showed that methane is the main carbon source of ANME-2d archaea varying from ANME-1 archaea which primarily assimilate dissolved inorganic carbon (DIC). ANME-2d archaea also assimilate DIC, but to a lower extent than methane. The lipid characterization and analysis of the carbon source ofCa.Methanoperedens facilitates distinction between ANME-2d and other ANMEs.


2019 ◽  
Vol 95 (7) ◽  
Author(s):  
Julia M Kurth ◽  
Nadine T Smit ◽  
Stefanie Berger ◽  
Stefan Schouten ◽  
Mike S M Jetten ◽  
...  

ABSTRACTThe anaerobic oxidation of methane (AOM) is a microbial process present in marine and freshwater environments. AOM is important for reducing the emission of the second most important greenhouse gas methane. In marine environments anaerobic methanotrophic archaea (ANME) are involved in sulfate-reducing AOM. In contrast, Ca. Methanoperedens of the ANME-2d cluster carries out nitrate AOM in freshwater ecosystems. Despite the importance of those organisms for AOM in non-marine environments little is known about their lipid composition or carbon sources. To close this gap, we analysed the lipid composition of ANME-2d archaea and found that they mainly synthesise archaeol and hydroxyarchaeol as well as different (hydroxy-) glycerol dialkyl glycerol tetraethers, albeit in much lower amounts. Abundant lipid headgroups were dihexose, monomethyl-phosphatidyl ethanolamine and phosphatidyl hexose. Moreover, a monopentose was detected as a lipid headgroup that is rare among microorganisms. Batch incubations with 13C labelled bicarbonate and methane showed that methane is the main carbon source of ANME-2d archaea varying from ANME-1 archaea that primarily assimilate dissolved inorganic carbon (DIC). ANME-2d archaea also assimilate DIC, but to a lower extent than methane. The lipid characterisation and analysis of the carbon source of Ca. Methanoperedens facilitates distinction between ANME-2d and other ANMEs.


2015 ◽  
Vol 12 (22) ◽  
pp. 6687-6706 ◽  
Author(s):  
P. Steeb ◽  
S. Krause ◽  
P. Linke ◽  
C. Hensen ◽  
A. W. Dale ◽  
...  

Abstract. Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m−2 d−1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.


2019 ◽  
Vol 16 (10) ◽  
pp. 2221-2232 ◽  
Author(s):  
Haoyi Yao ◽  
Wei-Li Hong ◽  
Giuliana Panieri ◽  
Simone Sauer ◽  
Marta E. Torres ◽  
...  

Abstract. We report a rare observation of a mini-fracture in near-surface sediments (30 cm below the seafloor) visualized using a rotational scanning X-ray of a core recovered from the Lomvi pockmark, Vestnesa Ridge, west of Svalbard (1200 m water depth). Porewater geochemistry and lipid biomarker signatures revealed clear differences in the geochemical and biogeochemical regimes of this core compared with two additional unfractured cores recovered from pockmark sites at Vestnesa Ridge, which we attribute to differential methane transport mechanisms. In the sediment core featuring the shallow mini-fracture at pockmark Lomvi, we observed high concentrations of both methane and sulfate throughout the core in tandem with moderately elevated values for total alkalinity, 13C-depleted dissolved inorganic carbon (DIC), and 13C-depleted lipid biomarkers (diagnostic for the slow-growing microbial communities mediating the anaerobic oxidation of methane with sulfate – AOM). In a separate unfractured core, recovered from the same pockmark about 80 m away from the fractured core, we observed complete sulfate depletion in the top centimeters of the sediment and much more pronounced signatures of AOM than in the fractured core. Our data indicate a gas advection-dominated transport mode in both cores, facilitating methane migration into sulfate-rich surface sediments. However, the moderate expression of AOM signals suggest a rather recent onset of gas migration at the site of the fractured core, while the geochemical evidence for a well-established AOM community at the second coring site suggest that gas migration has been going on for a longer period of time. A third core recovered from another pockmark along the Vestnesa Ridge Lunde pockmark was dominated by diffusive transport with only weak geochemical and biogeochemical evidence for AOM. Our study highlights that advective fluid and gas transport supported by mini-fractures can be important in modulating methane dynamics in surface sediments.


Sign in / Sign up

Export Citation Format

Share Document