methanotrophic communities
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 170 ◽  
pp. 104265
Author(s):  
Dandan Gao ◽  
Rong Sheng ◽  
Benjamin Moreira-Grez ◽  
Shuguang Liu ◽  
Risheng Xu ◽  
...  

2021 ◽  
Vol 801 ◽  
pp. 149723
Author(s):  
Binhao Wang ◽  
Erinne Stirling ◽  
Zhili He ◽  
Bin Ma ◽  
Hangjun Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Gaëtan Martin ◽  
Antti J. Rissanen ◽  
Sarahi L. Garcia ◽  
Maliheh Mehrshad ◽  
Moritz Buck ◽  
...  

Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.


Author(s):  
Yihe Zhang ◽  
Mengyuan Huang ◽  
Fengwei Zheng ◽  
Shumin Guo ◽  
Xiuchao Song ◽  
...  

With the rapid growth of livestock breeding, manure composting has evolved to be an important source of atmospheric methane (CH4) which accelerates global warming. Calcium superphosphate (CaSSP), as a commonly used fertilizer, was proposed to be effective in reducing CH4 emissions from manure composting, but the intrinsic biological mechanism remains unknown. Methanogens and methanotrophs both play a key role in mediating CH4 fluxes, therefore we hypothesized that the CaSSP-mediated reduction in CH4 emissions was attributed to the shift of methanogens and methanotrophs, which was regulated by physicochemical parameter changes. To test this hypothesis, a 60-day pig manure windrow composting experiment was conducted to investigate the response of CH4 emissions to CaSSP amendment, with a close linkage to methanogenic and methanotrophic communities. Results showed that CaSSP amendment significantly reduced CH4 emissions by 49.5% compared with the control over the whole composting period. The decreased mcrA gene (encodes the α-subunit of methyl-coenzyme M reductase) abundance in response to CaSSP amendment suggested that the CH4 emissions were reduced primarily due to the suppressed microbial CH4 production. Illumina MiSeq sequencing analysis showed that the overall distribution pattern of methanogenic and methanotrophic communities were significantly affected by CaSSP amendment. Particularly, the relative abundance of Methanosarcina that is known to be a dominant group for CH4 production, significantly decreased by up to 25.3% accompanied with CaSSP addition. Only Type I methanotrophs was detected in our study and Methylocaldum was the dominant methanotrophs in this composting system; in detail, CaSSP amendment increased the relative abundance of OTUs belong to Methylocaldum and Methylobacter. Moreover, the increased SO42− concentration and decreased pH acted as two key factors influencing the methanogenic and methanotrophic composition, with the former has a negative effect on methanogenesis growth and can later promote CH4 oxidation at a low level. This study deepens our understanding of the interaction between abiotic factors, function microbiota and greenhouse gas (GHG) emissions, as well as provides implication for practically reducing composting GHG emissions.


CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104883
Author(s):  
Chaonan Li ◽  
Bo Tu ◽  
Yongping Kou ◽  
Yansu Wang ◽  
Xiangzhen Li ◽  
...  

2020 ◽  
Vol 721 ◽  
pp. 137760 ◽  
Author(s):  
Hua-Jing Tian ◽  
Jiao Feng ◽  
Li-Mei Zhang ◽  
Ji-Zheng He ◽  
Yu-Rong Liu

Geoderma ◽  
2020 ◽  
Vol 361 ◽  
pp. 114071 ◽  
Author(s):  
Guopeng Zhou ◽  
Songjuan Gao ◽  
Changxu Xu ◽  
Fugen Dou ◽  
Katsu-yoshi Shimizu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dong-Hun Lee ◽  
Yung Mi Lee ◽  
Jung-Hyun Kim ◽  
Young Keun Jin ◽  
Charles Paull ◽  
...  

AbstractSeveral mud volcanoes are active in the Canadian Beaufort Sea. In this study, we investigated vertical variations in methanotrophic communities in sediments of the mud volcano MV420 (420 m water depth) by analyzing geochemical properties, microbial lipids, and nucleic acid signatures. Three push cores were collected with a remotely operated vehicle from visually discriminative habitats that were devoid of megafauna and/microbial mats (DM) to the naked eye, covered with bacterial mats (BM), or colonized by siboglinid tubeworms (ST). All MV420 sites showed the presence of aerobic methane oxidation (MOx)- and anaerobic methane oxidation (AOM)-related lipid biomarkers (4α-methyl sterols and sn-2-hydroxyarchaeol, respectively), which were distinctly different in comparison with a reference site at which these compounds were not detected. Lipid biomarker results were in close agreement with 16S rRNA analyses, which revealed the presence of MOx-related bacteria (Methylococcales) and AOM-related archaea (ANME-2 and ANME-3) at the MV420 sites. 4α-methyl sterols derived from Methylococcales predominated in the surface layer at the BM site, which showed a moderate methane flux (0.04 mmol cm−2 y−1), while their occurrence was limited at the DM (0.06 mmol cm−2 y−1) and ST (0.01 mmol cm−2 y−1) sites. On the other hand, 13C-depleted sn-2-hydroxyarchaeol potentially derived from ANME-2 and/or ANME-3 was abundant in down-core sediments at the ST site. Our study indicates that a niche diversification within this mud volcano system has shaped distinct methanotrophic communities due to availability of electron acceptors in association with varying degrees of methane flux and bioirrigation activity.


Sign in / Sign up

Export Citation Format

Share Document