scholarly journals Evidence of Deep DOC Enrichment via Particle Export Beneath Subarctic and Northern Subtropical Fronts in the North Pacific

2021 ◽  
Vol 8 ◽  
Author(s):  
Chelsea Nicole Lopez ◽  
Dennis Arthur Hansell

Here we provide compelling evidence that deep particle export enhanced dissolved organic carbon (DOC) concentrations beneath the Pacific’s Subarctic Front (SA, ∼42°N) and Northern Subtropical Front (NST, ∼34°N). We report three main findings: First, deep export of subjectively small particles (128–512 μm) was apparent throughout the frontal zone in which the SA resides. However, export of large particles was specifically associated with the SA, rather than the entire frontal zone, and appeared to exclusively transfer DOC into the bathypelagic water column. Second, a similar DOC enrichment existed beneath the NST, though this signal was curiously not accompanied by observable particles (>128 μm). We conclude that export occurring previously in winter left this DOC behind as a residue, though the associated particles were no longer present by spring. Third, the presence of strong hydrographic fronts was not the only control on export that resulted in these unique DOC distributions. Deep export and DOC enrichment was also controlled by latitude-specific biogeochemical and hydrographic conditions, such as depth of the nutricline and seasonal mixed layer shoaling. Given these observations, the fronts within the transitional region of the North Pacific are clearly special locations for deep carbon sequestration and for providing uncommon DOC enrichment that ultimately supports the deep microbial community.

2012 ◽  
Vol 25 (1) ◽  
pp. 111-139 ◽  
Author(s):  
Bunmei Taguchi ◽  
Hisashi Nakamura ◽  
Masami Nonaka ◽  
Nobumasa Komori ◽  
Akira Kuwano-Yoshida ◽  
...  

Abstract Potential impacts of pronounced decadal-scale variations in the North Pacific sea surface temperature (SST) that tend to be confined to the subarctic frontal zone (SAFZ) upon seasonally varying atmospheric states are investigated, by using 48-yr observational data and a 120-yr simulation with an ocean–atmosphere coupled general circulation model (CGCM). SST fields based on in situ observations and the ocean component of the CGCM have horizontal resolutions of 2.0° and 0.5°, respectively, which can reasonably resolve frontal SST gradient across the SAFZ. Both the observations and CGCM simulation provide a consistent picture between SST anomalies in the SAFZ yielded by its decadal-scale meridional displacement and their association with atmospheric anomalies. Correlated with SST anomalies persistent in the SAFZ from fall to winter, a coherent decadal-scale signal in the wintertime atmospheric circulation over the North Pacific starts emerging in November and develops into an equivalent barotropic anomaly pattern similar to the Pacific–North American (PNA) pattern. The PNA-like signal with the weakened (enhanced) surface Aleutian low correlated with positive (negative) SST anomalies in the SAFZ becomes strongest and most robust in January, under the feedback forcing from synoptic-scale disturbances migrating along the Pacific storm track that shifts northward (southward) in accord with the oceanic SAFZ. This PNA-like signal, however, breaks down in February, which is suggestive of a particular sensitivity of that anomaly pattern to subtle differences in the background climatological-mean state. Despite its collapse in February, the PNA-like signal recurs the next January. This subseasonal evolution of the signal suggests that the PNA-like anomaly pattern may develop as a response to the persistent SST anomalies that are maintained mainly through ocean dynamics.


2017 ◽  
Vol 30 (16) ◽  
pp. 6247-6264 ◽  
Author(s):  
Bunmei Taguchi ◽  
Niklas Schneider ◽  
Masami Nonaka ◽  
Hideharu Sasaki

Generation and propagation processes of upper-ocean heat content (OHC) in the North Pacific are investigated using oceanic subsurface observations and an eddy-resolving ocean general circulation model hindcast simulation. OHC anomalies are decomposed into physically distinct dynamical components (OHC ρ) due to temperature anomalies that are associated with density anomalies and spiciness components (OHC χ) due to temperature anomalies that are density compensating with salinity. Analysis of the observational and model data consistently shows that both dynamical and spiciness components contribute to interannual–decadal OHC variability, with the former (latter) component dominating in the subtropical (subpolar) North Pacific. OHC ρ variability represents heaving of thermocline, propagates westward, and intensifies along the Kuroshio Extension, consistent with jet-trapped Rossby waves, while OHC χ variability propagates eastward along the subarctic frontal zone, suggesting advection by mean eastward currents. OHC χ variability tightly corresponds in space to horizontal mean spiciness gradients. Meanwhile, area-averaged OHC χ anomalies in the western subarctic frontal zone closely correspond in time to meridional shifts of the subarctic frontal zone. Regression coefficient of the OHC χ time series on the frontal displacement anomalies quantitatively agree with the area-averaged mean spiciness gradient in the region, and suggest that OHC χ is generated via frontal variability in the subarctic frontal zone.


Sign in / Sign up

Export Citation Format

Share Document