scholarly journals Refining Estimates of Greenhouse Gas Emissions From Salt Marsh “Blue Carbon” Erosion and Decomposition

2021 ◽  
Vol 8 ◽  
Author(s):  
Nathan D. McTigue ◽  
Quentin A. Walker ◽  
Carolyn A. Currin

Coastal wetlands have sediments that contain organic matter preserved against decomposition for timespans that can range up to millennia. This “blue carbon” in wetland sediments has been proposed as a sink for atmospheric carbon dioxide and a potential source of greenhouse gases if coastal habitats are lost. A missing gap in the role of coastal habitats in the global carbon cycle is elucidating the fate of wetland sediment carbon following disturbance events, such as erosion, that can liberate organic matter to an oxygenated environment where decomposition can more readily occur. Here, we track the fate of previously stored salt marsh sediment by measuring the production of carbon dioxide (CO2) and methane (CH4) during an oxygenated incubation. Sediments from two depth horizons (5–10 cm and 20–25 cm) were incubated at two temperatures (20 and 30°C) for 161 days. Q10 of the decomposition process over the entire course of the experiment was 2.0 ± 0.1 and 2.2 ± 0.2 for shallow and deep horizons, respectively. Activation energy for the decomposition reaction (49.7 kJ ⋅ mol–1 and 58.8 kJ ⋅ mol–1 for shallow and deep sediment horizons, respectively) was used to calculate temperature-specific decomposition rates that could be applied to environmental data. Using high-frequency water temperature data, this strategy was applied to coastal states in the conterminous United States (CONUS) where we estimated annual in situ decomposition of eroded salt marsh organic matter as 7–24% loss per year. We estimate 62.90 ± 2.81 Gg C ⋅ yr–1 is emitted from eroded salt marsh sediment decomposition in the CONUS.

2020 ◽  
Author(s):  
Jeffrey Marlow ◽  
Rachel Spietz ◽  
Keun-Young Kim ◽  
Mark Ellisman ◽  
Peter Girguis ◽  
...  

AbstractCoastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were embedded and analyzed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ∼60% in the top cm to 10-25% between 2-7 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase, and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.Statement of SignificanceMicroscale spatial relationships dictate critical aspects of a microbiome’s inner workings and emergent properties, such as evolutionary pathways, niche development, and community structure and function. However, many commonly used methods in microbial ecology neglect this parameter – obscuring important microbe-microbe and microbe-mineral interactions – and instead employ bulk-scale methodologies that are incapable of resolving these intricate relationships.This benchmark study presents a compelling new approach for exploring the anabolic activity of a complex microbial community by mapping the precise spatial configuration of anabolically active organisms within mineralogically heterogeneous sediment through in situ incubation, resin embedding, and correlative fluorescence and electron microscopy. In parallel, active organisms were identified through fluorescence-activated cell sorting and 16S rRNA gene sequencing, enabling a powerful interpretive framework connecting location, identity, activity, and putative biogeochemical roles of microbial community members.We deploy this novel approach in salt marsh sediment, revealing quantitative insights into the fundamental principles that govern the structure and function of sediment-hosted microbial communities. In particular, at different sediment horizons, we observed striking changes in the proportion of anabolically active cells, the identities of the most prominent active community members, and the nature of microbe-mineral affiliations. Improved approaches for understanding microscale ecosystems in a new light, such as those presented here, reveal environmental parameters that promote or constrain metabolic activity and clarify the impact that microbial communities have on our world.


2019 ◽  
Vol 46 (21) ◽  
pp. 12250-12257 ◽  
Author(s):  
Daniel J. Nowacki ◽  
Neil K. Ganju

Sign in / Sign up

Export Citation Format

Share Document