scholarly journals Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds

2016 ◽  
Vol 7 ◽  
Author(s):  
Sumaira Anwar ◽  
Basharat Ali ◽  
Imran Sajid
2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


2013 ◽  
Vol 172 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Asma Ait-Kaki ◽  
Noreddine Kacem-Chaouche ◽  
Marc Ongena ◽  
Mounira Kara-Ali ◽  
Laid Dehimat ◽  
...  

1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


1992 ◽  
Vol 38 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Robert M. Zablotowicz ◽  
Caroline M. Press ◽  
Nicola Lyng ◽  
Gerry L. Brown ◽  
Joseph W. Kloepper

The compatibility of a select group of plant growth promoting rhizobacterial strains with chemicals commonly used as seed treatments was investigated. Strains in several genera (Serratia, Pseudomonas, and coryneform-like bacteria) were found to be tolerant to Vitavax RS (containing lindane, carboxin, and thiram), Epic (iprodione), and (or) captan tested in vitro at commercial rates. Six of 10 strains survived equally, and exhibited similar root colonization, on Vitavax RS treated and nontreated seed. Four of seven strains tested (Serratia spp. and P. fluorescens) were likewise found to be compatible with a captan seed treatment on supersweet corn, using the same criteria. Ability of bacteria to grow on pesticide-amended media did not always indicate compatibility with chemical seed treatments in vivo. A greenhouse study demonstrated that enhanced emergence occurred with the coryneform-like strain 44-9 on Vitavax RS treated canola seed grown under conditions favoring disease due to Rhizoctonia solani. The ability to combine plant growth promoting rhizobacterial strains with current agrichemicals for plant growth stimulation and disease control is indicated. Key words: pesticide compatibility, Pseudomonas, agrichemicals, Serratia, damping-off, plant growth promoting rhizobacteria.


2017 ◽  
Vol 9 (1) ◽  
pp. 167-172
Author(s):  
Sonal Bhardwaj ◽  
Bhawna Dipta ◽  
Shruti Kirti ◽  
Rajesh Kaushal

In the current study, a total of 25 isolates were isolated from the rhizosphere and roots of cauliflower (Brassica oleraceavar. botrytis L.) from the vicinity of Una district of Himachal Pradesh. The isolates were tested in vitro for their ability to solubilise phosphorous and produce siderophore, indole acetic acid (IAA), hydrogen cyanide (HCN) and antifungal metabolites against the soil borne pathogens. Results revealed that out of 25, only 4 rhizospheric isolates (SB5, SB11, SB8 and SB10) have maximum plant growth promoting attributes. The isolates were identified as Bacillus sp. on the basis of Bergey’s manual of systematic bacteriology. The isolate SB11 recorded highest phosphate solubilizing efficiency in solid medium (109.09%) and in liquid medium (350μg/ml). Maximum production of IAA (51.96μg/ml), siderophore (91.41%) and HCN were also observed for the same isolate. Further-more, the isolate SB11 produced highest antifungal metabolite production against Rhizoctoniasolani(37.11%), Sclerotiniasclerotiorum(41.11%), and Pythium sp. (71.11%) causing root rot, stalk rot and damping off diseases in cauliflower, respectively. The selected isolate (SB11) showed optimum growth at a pH of 7.0, 35°C temperature and 2% NaCl. On the basis of multifarious PGP-traits the SB11 isolate has tremendous potential to be used as a bioferti-lizer/bioprotectant for growth promotion and natural protection of cauliflower under low hill conditions of Himachal Pradesh.


2021 ◽  
Vol 15 (1) ◽  
pp. 428-436
Author(s):  
Devendra Jain ◽  
Gunnjeet Kaur ◽  
Ali Asger Bhojiya ◽  
Surya Chauhan ◽  
S.K. Khandelwal ◽  
...  

The present research was conducted to characterize the indigenous plant growth promoting (PGP) Azotobacter strains isolated from plant root interface of semi-arid regions of Rajasthan (India) and to study their potential to be used as bio-fertilizers. A total of 172 Azotobacter strains were isolated, purified and based on the morphological test i.e. gram staining, pigmentation, cyst formation, fluorescence etc, broadly classified as Azotobacter. Further the secluded strains were examined for biochemical analysis and plant growth promoting characters. All the isolates showed different biochemical characteristics and significant PGP traits. IAA activity of the Azotobacter strains ranges from 54.5-6000 µg/mL. Ammonia, HCN and siderophore was produced by 92.4%, 78.4% and 80.23% of the total isolates respectively. Solubilization of phosphate was observed in 97.6% of the total isolates. These strains were also characterized for qualitative and quantitative N2 fixation abilities and the result indicated that 114 strains showed positive results on nitrogen free malate agar medium (NFMM) containing bromothymol blue (BTB) and able to produce 18.93-475.6 N-moles C2H4 mg protein−1 h−1 of acetylene reduced by Azotobacter strains. In vitro pot studies revealed that the selected native Azotobacter strains having high ARA results significantly increase the plant growth characters. Shoot length, root length, root number and chlorophyll content and leaf number increases by 45.62%, 17.60%, 97.49%, 49.69% and 27.83% respectively in pot inoculated with AZO23-3 as compared to control. These effective strains can further be utilized for development of effective microbial formulations.


2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Lamia AOUAR ◽  
INAS BOUKELLOUL ◽  
ABDERRAHMANE BENADJILA

Abstract. Aouar L, Boukelloul I, Benadjila A. 2020. Identification of antagonistic Streptomyces strains isolated from Algerian Saharan soils and their plant growth promoting properties. Biodiversitas 21: 5672-5683. To produce new bioactive substances of agricultural interest, extreme ecosystems can be a source of unexplored microorganisms. Accordingly, in this study, twenty-two actinobacteria strains were obtained from rhizospheric arid soils of palm groves collected from Biskra and El Oued in the Algerian Sahara. All isolates were examined for the in vitro antifungal potential towards phytopathogenic fungi: Aspergillus flavus, Verticillium dahlia, Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum as well as for their antibacterial property toward phytopathogenic bacteria: Streptomyces scabiei, Pectobacterium carotovorum and Agrobacterium tumefaciens. The three isolates (13%) that inhibited at least five pathogens were then selected, identified and assessed for their attributes to produce indole-3-acetic acid (IAA) and siderophores, to solubilize phosphate, and to antagonize Streptomyces scabiei in vivo. According to phylogenetic analysis performed with 16S rDNA sequence, chemotaxonomy and phenotypic characteristics, the strain SO1, which inhibited all tested pathogens, was assigned to Streptomyces flaveus. While, strains SO2 and SB1 were affiliated to Streptomyces enissocaesilis and Streptomyces albidoflavus, respectively. All strains produced IAA but only SO1 and SB1 were able to elaborate siderophores catecholate-type. Two strains SO1 and SO2 exhibited a capacity to solubilize phosphate and SO1 was able to suppress the pathogenic effect of Streptomyces scabiei on radish seedlings. The findings indicate that SO1 strain may reveal the potential for use as a biocontrol agent and plant growth promoter.


Author(s):  
Saroj Bala ◽  
Rajni Devi ◽  
Veena Khanna

The latest soil management scenario is occupied by destructive chemical fertilizers, which is a serious risk to both human health as well as to the environment. Advantageous microbes present in soil are used as a biofertilizers for a promising role in sustainable agriculture. Pigeon pea (Cajanus cajan L.) is a primitive protein rich leguminous pulse in India. Thirty-five isolates from rhizospheric soil samples were collected from twelve different locations of Punjab (India). Morphological and biochemical characterization for selection of potential plant growth promoting traits with antifungal properties was undertaken. Most of the inoculated seeds with rhizoisolates evolved a significant increase in growth parameters of pigeon pea as compared to uninoculated seeds, both in vitro and in vivo conditions. Plant growth promoting rhizobacterias (PGPRs) are environmentally safe as they lead to increased production and resistance against diseases of crops.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0139468 ◽  
Author(s):  
Ajit Kumar Passari ◽  
Vineet Kumar Mishra ◽  
Vijai Kumar Gupta ◽  
Mukesh Kumar Yadav ◽  
Ratul Saikia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document