streptomyces scabiei
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

Biophysica ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Benoit Deflandre ◽  
Sébastien Rigali

The beta-glucosidase BglC fulfills multiple functions in both primary metabolism and induction of pathogenicity of Streptomyces scabiei, the causative agent of common scab in root and tuber crops. Indeed, this enzyme hydrolyzes cellobiose and cellotriose to feed glycolysis with glucose directly and modifies the intracellular concentration of these cello-oligosaccharides, which are the virulence elicitors. The inactivation of bglC led to unexpected phenotypes such as the constitutive overproduction of thaxtomin A, the main virulence determinant of S. scabiei. In this work, we reveal a new target substrate of BglC, the phytoalexin scopolin. Removal of the glucose moiety of scopolin generates scopoletin, a potent inhibitor of thaxtomin A production. The hydrolysis of scopolin by BglC displayed substrate inhibition kinetics, which contrasts with the typical Michaelis–Menten saturation curve previously observed for the degradation of its natural substrate cellobiose. Our work, therefore, reveals that BglC targets both cello-oligosaccharide elicitors emanating from the hosts of S. scabiei, and the scopolin phytoalexin generated by the host defense mechanisms, thereby occupying a key position to fine-tune the production of the main virulence determinant thaxtomin A.


2021 ◽  
Author(s):  
Benoit Deflandre ◽  
Nudzejma Stulanivic ◽  
Soren Planckaert ◽  
Sinaeda Anderssen ◽  
Beatrice Bonometti ◽  
...  

The development of spots or lesions symptomatic of the common scab disease on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by the cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or transcriptional response to cello-oligosaccharides. Comparative metabolomic and transcriptomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include i) thaxtomins and concanamycins phytotoxins (and to a lesser extent N-coronafacoyl-L-isoleucine), ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, iii) ectoine for protection against osmotic shock once inside the host, and iv) bottromycins and concanamycins antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cell-oligosaccharides reduced the production of the spore germination inhibitors germicidins and the plant growth regulators rotihibins. The metabolomic study also revealed that cellotriose is in general a more potent elicitor of the virulome compared to cellobiose. This result supports an earlier hypothesis that suggested that the trisaccharide would be the real virulence-triggering factor released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of another master regulator sensing the internalization of cello-oligosaccharides. Finally, we found nine additional cryptic and orphan BGCs that have their expression awakened by cello-oligosaccharides, demonstrating that other and yet to be discovered metabolites are part of the virulome of S. scabiei.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253414
Author(s):  
Nathalie Beaudoin ◽  
Iauhenia Isayenka ◽  
Audrey Ducharme ◽  
Sophie Massie ◽  
André Gagnon ◽  
...  

Common scab is a potato disease characterized by the formation of scab-like lesions on the surface of potato tubers. The actinobacterium Streptomyces scabiei is the main causal agent of common scab. During infection, this bacterium synthesizes the phytotoxin thaxtomin A which is essential for the production of disease symptoms. While thaxtomin A can activate an atypical programmed cell death in plant cell suspensions, it is possible to gradually habituate plant cells to thaxtomin A to provide resistance to lethal phytotoxin concentrations. Potato ‘Russet Burbank’ calli were habituated to thaxtomin A to regenerate the somaclone RB9 that produced tubers more resistant to common scab than those obtained from the original cultivar. Compared to the Russet Burbank cultivar, somaclone RB9 generated up to 22% more marketable tubers with an infected tuber area below the 5% threshold. Enhanced resistance was maintained over at least two years of cultivation in the field. However, average size of tubers was significantly reduced in somaclone RB9 compared to the parent cultivar. Small RB9 tubers had a thicker phellem than Russet Burbank tubers, which may contribute to improving resistance to common scab. These results show that thaxtomin A-habituation in potato is efficient to produce somaclones with increased and durable resistance to common scab.


ACS Omega ◽  
2021 ◽  
Vol 6 (17) ◽  
pp. 11474-11487
Author(s):  
Jingyu Liu ◽  
Louis-Félix Nothias ◽  
Pieter C. Dorrestein ◽  
Kapil Tahlan ◽  
Dawn R. D. Bignell

2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Lamia AOUAR ◽  
INAS BOUKELLOUL ◽  
ABDERRAHMANE BENADJILA

Abstract. Aouar L, Boukelloul I, Benadjila A. 2020. Identification of antagonistic Streptomyces strains isolated from Algerian Saharan soils and their plant growth promoting properties. Biodiversitas 21: 5672-5683. To produce new bioactive substances of agricultural interest, extreme ecosystems can be a source of unexplored microorganisms. Accordingly, in this study, twenty-two actinobacteria strains were obtained from rhizospheric arid soils of palm groves collected from Biskra and El Oued in the Algerian Sahara. All isolates were examined for the in vitro antifungal potential towards phytopathogenic fungi: Aspergillus flavus, Verticillium dahlia, Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum as well as for their antibacterial property toward phytopathogenic bacteria: Streptomyces scabiei, Pectobacterium carotovorum and Agrobacterium tumefaciens. The three isolates (13%) that inhibited at least five pathogens were then selected, identified and assessed for their attributes to produce indole-3-acetic acid (IAA) and siderophores, to solubilize phosphate, and to antagonize Streptomyces scabiei in vivo. According to phylogenetic analysis performed with 16S rDNA sequence, chemotaxonomy and phenotypic characteristics, the strain SO1, which inhibited all tested pathogens, was assigned to Streptomyces flaveus. While, strains SO2 and SB1 were affiliated to Streptomyces enissocaesilis and Streptomyces albidoflavus, respectively. All strains produced IAA but only SO1 and SB1 were able to elaborate siderophores catecholate-type. Two strains SO1 and SO2 exhibited a capacity to solubilize phosphate and SO1 was able to suppress the pathogenic effect of Streptomyces scabiei on radish seedlings. The findings indicate that SO1 strain may reveal the potential for use as a biocontrol agent and plant growth promoter.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1134 ◽  
Author(s):  
Steven M. Caruso ◽  
Tagide N. deCarvalho ◽  
Anthony Huynh ◽  
George Morcos ◽  
Nansen Kuo ◽  
...  

Streptomyces phages WheeHeim and Forthebois are two novel members of the Tectiviridae family. These phages were isolated on cultures of the plant pathogen Streptomyces scabiei, known for its worldwide economic impact on potato crops. Transmission electron microscopy showed viral particles with double-layered icosahedral capsids, and frequent instances of protruding nanotubes harboring a collar-like structure. Mass-spectrometry confirmed the presence of lipids in the virion, and serial purification of colonies from turbid plaques and immunity testing revealed that both phages are temperate. Streptomyces phages WheeHeim and Forthebois have linear dsDNA chromosomes (18,266 bp and 18,251 bp long, respectively) with the characteristic two-segment architecture of the Tectiviridae. Both genomes encode homologs of the canonical tectiviral proteins (major capsid protein, packaging ATPase and DNA polymerase), as well as PRD1-type virion-associated transglycosylase and membrane DNA delivery proteins. Comparative genomics and phylogenetic analyses firmly establish that these two phages, together with Rhodococcus phage Toil, form a new genus within the Tectiviridae, which we have tentatively named Deltatectivirus. The identification of a cohesive clade of Actinobacteria-infecting tectiviruses with conserved genome structure but with scant sequence similarity to members of other tectiviral genera confirms that the Tectiviridae are an ancient lineage infecting a broad range of bacterial hosts.


Sign in / Sign up

Export Citation Format

Share Document