scholarly journals Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus

2017 ◽  
Vol 8 ◽  
Author(s):  
Yi Wang ◽  
Hui Li ◽  
Yan Wang ◽  
Lu Zhang ◽  
Jianguo Xu ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3195 ◽  
Author(s):  
Yingyu Wang ◽  
Xiaowei Li ◽  
Yang Wang ◽  
Stefan Schwarz ◽  
Jianzhong Shen ◽  
...  

The optrA gene, which confers transferable resistance to oxazolidinones and phenicols, is defined as an ATP-binding cassette (ABC) transporter but lacks transmembrane domains. The resistance mechanism of optrA and whether it involves antibiotic efflux or ribosomal protection remain unclear. In this study, we determined the MIC values of all bacterial strains by broth microdilution, and used ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry to quantitatively determine the intracellular concentrations of linezolid and florfenicol in Enterococcus faecalis and Staphylococcus aureus. Linezolid and florfenicol both accumulated in susceptible strains and optrA-carrying strains of E. faecalis and S. aureus. No significant differences were observed in the patterns of drug accumulation among E. faecalis JH2-2, E. faecalis JH2-2/pAM401, and E. faecalis JH2-2/pAM401+optrA, but also among S. aureus RN4220, S. aureus RN4220/pAM401, and S. aureus RN4220/pAM401+optrA. ANOVA scores also suggested similar accumulation conditions of the two target compounds in susceptible strains and optrA-carrying strains. Based on our findings, the mechanism of optrA-mediated resistance to oxazolidinones and phenicols obviously does not involve active efflux and the OptrA protein does not confer resistance via efflux like other ABC transporters.


Sign in / Sign up

Export Citation Format

Share Document