scholarly journals Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model

2018 ◽  
Vol 9 ◽  
Author(s):  
Yee-Chin Wong ◽  
Moataz Abd El Ghany ◽  
Raeece N. M. Ghazzali ◽  
Soon-Joo Yap ◽  
Chee-Choong Hoh ◽  
...  
Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 631-643
Author(s):  
Pamela E Hoppe ◽  
Robert H Waterston

Abstract The precise arrangement of molecules within the thick filament, as well as the mechanisms by which this arrangement is specified, remains unclear. In this article, we have exploited a unique genetic interaction between one isoform of myosin heavy chain (MHC) and paramyosin in Caenorhabditis elegans to probe the molecular interaction between MHC and paramyosin in vivo. Using chimeric myosin constructs, we have defined a 322-residue region of the MHC A rod critical for suppression of the structural and motility defects associated with the unc-15(e73) allele. Chimeric constructs lacking this region of MHC A either fail to suppress, or act as dominant enhancers of, the e73 phenotype. Although the 322-residue region is required for suppression activity, our data suggest that sequences along the length of the rod also play a role in the isoform-specific interaction between MHC A and paramyosin. Our genetic and cell biological analyses of construct behavior suggest that the 322-residue region of MHC A is important for thick filament stability. We present a model in which this region mediates an avid interaction between MHC A and paramyosin in parallel arrangement in formation of the filament arms.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2021 ◽  
pp. 136114
Author(s):  
Xiaoda Lu ◽  
Yue Zhang ◽  
Hongyuan Li ◽  
Yushan Jin ◽  
Lihui Zhao ◽  
...  

2011 ◽  
Vol 286 (41) ◽  
pp. 35915-35921 ◽  
Author(s):  
Liquan Cai ◽  
Binh L. Phong ◽  
Alfred L. Fisher ◽  
Zhou Wang

EAF2, an androgen-regulated protein, interacts with members of the ELL (eleven-nineteen lysine-rich leukemia) transcription factor family and also acts as a tumor suppressor. Although these proteins control transcriptional elongation and perhaps modulate the effects of other transcription factors, the mechanisms of their actions remain largely unknown. To gain new insights into the biology of the EAF2 and ELL family proteins, we used Caenorhabditis elegans as a model to explore the in vivo roles of their worm orthologs. Through the use of transgenic worms, RNAi, and an eaf-1 mutant, we found that both genes are expressed in multiple cell types throughout the worm life cycle and that they play important roles in fertility, survival, and body size regulation. ELL-1 and EAF-1 likely contribute to these activities in part through modulating cuticle synthesis, given that we observed a disrupted cuticle structure in ell-1 RNAi-treated or eaf-1 mutant worms. Consistent with disruption of cuticle structure, loss of either ELL-1 or EAF-1 suppressed the rol phenotype of specific collagen mutants, possibly through the control of dpy-3, dpy-13, and sqt-3 collagen gene expression. Furthermore, we also noted the regulation of collagen expression by ELL overexpression in PC3 human prostate cancer cells. Together, these results reveal important roles for the eaf-1 and ell-1 genes in the regulation of extracellular matrix components.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,


2015 ◽  
Vol 26 (10) ◽  
pp. 1887-1900 ◽  
Author(s):  
Steven D. Garafalo ◽  
Eric S. Luth ◽  
Benjamin J. Moss ◽  
Michael I. Monteiro ◽  
Emily Malkin ◽  
...  

Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.


ChemInform ◽  
2015 ◽  
Vol 46 (18) ◽  
pp. no-no
Author(s):  
Koneni V. Sashidhara ◽  
Ram K. Modukuri ◽  
Pooja Jadiya ◽  
Ranga Prasad Dodda ◽  
Manoj Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document