Faculty Opinions recommendation of In vitro and in vivo reconstitution of the cadherin-catenin-actin complex from Caenorhabditis elegans.

Author(s):  
Alpha Yap
2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2005 ◽  
Vol 73 (11) ◽  
pp. 7236-7242 ◽  
Author(s):  
Creg Darby ◽  
Sandya L. Ananth ◽  
Li Tan ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 811
Author(s):  
Cristina Moliner ◽  
Víctor López ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Isabel C. F. R. Ferreira ◽  
...  

Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid being the predominant compound in the extract, which also exhibited a strong antioxidant capacity in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover, R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or nutraceutical potential.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1106
Author(s):  
Natasha Rios Leite ◽  
Laura Costa Alves de Araújo ◽  
Paola dos Santos da Rocha ◽  
Danielle Araujo Agarrayua ◽  
Daiana Silva Ávila ◽  
...  

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. in vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


2020 ◽  
Vol 21 (12) ◽  
pp. 4455
Author(s):  
Rong-Tzong Tsai ◽  
Chia-Wen Tsai ◽  
Shih-Ping Liu ◽  
Jia-Xin Gao ◽  
Yun-Hua Kuo ◽  
...  

The movement disorder Parkinson’s disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


2019 ◽  
Vol 7 (2) ◽  
pp. 45 ◽  
Author(s):  
Emily Schifano ◽  
Paola Zinno ◽  
Barbara Guantario ◽  
Marianna Roselli ◽  
Sante Marcoccia ◽  
...  

Lactic acid bacteria (LAB) are involved in several food fermentations and many of them provide strain-specific health benefits. Herein, the probiotic potential of the foodborne strain Lactobacillus fermentum MBC2 was investigated through in vitro and in vivo approaches. Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity and anti-aging effects. L. fermentum MBC2 showed a high gut colonization capability compared to E. coli OP50 (OP50) or L. rhamnosus GG (LGG). Moreover, analysis of pumping rate, lipofuscin accumulation, and body bending showed anti-aging effects in L. fermentum MBC2-fed worms. Studies on PEPT-1 mutants demonstrated that pept-1 gene was involved in the anti-aging processes mediated by this bacterial strain through DAF-16, whereas the oxidative stress protection was PEPT-1 independent. Moreover, analysis of acid tolerance, bile tolerance, and antibiotic susceptibility were evaluated. L. fermentum MBC2 exerted beneficial effects on nematode lifespan, influencing energy metabolism and oxidative stress resistance, resulted in being tolerant to acidic pH and able to adhere to Caco-2 cells. Overall, these findings provide new insight for application of this strain in the food industry as a newly isolated functional starter. Furthermore, these results will also shed light on C. elegans molecular players involved in host-microbe interactions.


2016 ◽  
Vol 37 (6) ◽  
Author(s):  
Liang Sha ◽  
Hiroaki Daitoku ◽  
Sho Araoi ◽  
Yuta Kaneko ◽  
Yuta Takahashi ◽  
...  

ABSTRACT Protein arginine methyltransferase 1 (PRMT-1) catalyzes asymmetric arginine dimethylation on cellular proteins and modulates various aspects of biological processes, such as signal transduction, DNA repair, and transcriptional regulation. We have previously reported that the null mutant of prmt-1 in Caenorhabditis elegans exhibits a slightly shortened life span, but the physiological significance of PRMT-1 remains largely unclear. Here we explored the role of PRMT-1 in mitochondrial function as hinted by a two-dimensional Western blot-based proteomic study. Subcellular fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that PRMT-1 is almost entirely responsible for asymmetric arginine dimethylation on mitochondrial proteins. Importantly, isolated mitochondria from prmt-1 mutants represent compromised ATP synthesis in vitro, and whole-worm respiration in prmt-1 mutants is decreased in vivo. Transgenic rescue experiments demonstrate that PRMT-1-dependent asymmetric arginine dimethylation is required to prevent mitochondrial reactive oxygen species (ROS) production, which consequently causes the activation of the mitochondrial unfolded-protein response. Furthermore, the loss of enzymatic activity of prmt-1 induces food avoidance behavior due to mitochondrial dysfunction, but treatment with the antioxidant N-acetylcysteine significantly ameliorates this phenotype. These findings add a new layer of complexity to the posttranslational regulation of mitochondrial function and provide clues for understanding the physiological roles of PRMT-1 in multicellular organisms.


2009 ◽  
Vol 418 (1) ◽  
pp. 73-80 ◽  
Author(s):  
James R. Johnson ◽  
Pawel Ferdek ◽  
Lu-Yun Lian ◽  
Jeff W. Barclay ◽  
Robert D. Burgoyne ◽  
...  

SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) are widely accepted to drive all intracellular membrane fusion events. SM (Sec1/Munc18-like) proteins bind to SNAREs and this interaction may underlie their ubiquitous requirement for efficient membrane fusion. SM proteins bind to SNAREs in at least three modes: (i) to a closed conformation of syntaxin; (ii) to the syntaxin N-terminus; and (iii) to the assembled SNARE complex. Munc18-1 exhibits all three binding modes and recent in vitro reconstitution assays suggest that its interaction with the syntaxin N-terminus is essential for neuronal SNARE complex binding and efficient membrane fusion. To investigate the physiological relevance of these binding modes, we studied the UNC-18/UNC-64 SM/SNARE pair, which is essential for neuronal exocytosis in Caenorhabditis elegans. Mutations in the N-terminus of UNC-64 strongly inhibited binding to UNC-18, as did mutations targeting closed conformation binding. Complementary mutations in UNC-18 designed to selectively impair binding to either closed syntaxin or its N-terminus produced a similarly strong inhibition of UNC-64 binding. Therefore high-affinity UNC18/UNC-64 interaction in vitro involves both binding modes. To determine the physiological relevance of each mode, unc-18-null mutant worms were transformed with wild-type or mutant unc-18 constructs. The UNC-18(R39C) construct, that is defective in closed syntaxin binding, fully rescued the locomotion defects of the unc-18 mutant. In contrast, the UNC-18(F113R) construct, that is defective in binding to the N-terminus of UNC-64, provided no rescue. These results suggest that binding of UNC-18 to closed syntaxin is dispensable for membrane fusion, whereas interaction with the syntaxin N-terminus is essential for neuronal exocytosis in vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


Sign in / Sign up

Export Citation Format

Share Document