Transfer and tissue-specific accumulation of components in embryos of Caenorhabditis elegans and dolichura: in vivo analysis with a low-cost signal

Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Germoglio ◽  
Anna Valenti ◽  
Ines Gallo ◽  
Chiara Forenza ◽  
Pamela Santonicola ◽  
...  

AbstractFanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Suanne Bosch ◽  
Tarryn Lee Botha ◽  
Anine Jordaan ◽  
Mark Maboeta ◽  
Victor Wepener

The nematode Caenorhabditis elegans is used as an ecotoxicological model species in both aqueous medium and solid substrates. It is easy and of low cost to maintain in the laboratory and it produces hundreds of offspring within a short period of time. It also has a small body size (1 mm), making it possible for in vivo assays to be conducted in 12-well plates. Engineered nanomaterials (ENMs) are a class of emerging pollutants. Nanogold (nAu) is used in many consumer products and in vivo drug delivery. These materials can be released into the aquatic environment during production or discarding of consumer products. As nAu is insoluble in water, the sediment would become the final depository for the materials. It has become increasingly important to use sediment dwelling organisms to screen for possible toxicity of these ENMs. In this study C. elegans was exposed to a range of concentrations of nAu and ionic gold in M9-media, acting as a substitute for pore water. After 96-hour growth, fertility and reproduction were determined. Internal structure damage and internalisation of particles in C. elegans were determined by using SEM and CytoViva® Darkfield Imaging. From these images the nanomaterials are distributed around the oocytes in the reproductive organs, as well as the pharynx. Results obtained indicate that nAu affects reproduction more than growth due to internal gonad damage, albeit at very high exposure concentrations, indicating no toxicity at environmentally relevant concentrations. Ionic Au is more toxic than nAu and effects fertility and reproduction due to ion release. These results give more information regarding the toxicity and in vivo uptake of nAu and form part of an environmental risk assessment of ENMs.


2018 ◽  
Vol 29 (6) ◽  
pp. 722-735 ◽  
Author(s):  
Sarah Bianchi ◽  
Kacper B. Rogala ◽  
Nicola J. Dynes ◽  
Manuel Hilbert ◽  
Sebastian A. Leidel ◽  
...  

Centrioles are microtubule-based organelles that organize the microtubule network and seed the formation of cilia and flagella. New centrioles assemble through a stepwise process dependent notably on the centriolar protein SAS-5 in Caenorhabditis elegans. SAS-5 and its functional homologues in other species form oligomers that bind the centriolar proteins SAS-6 and SAS-4, thereby forming an evolutionarily conserved structural core at the onset of organelle assembly. Here, we report a novel interaction of SAS-5 with microtubules. Microtubule binding requires SAS-5 oligomerization and a disordered protein segment that overlaps with the SAS-4 binding site. Combined in vitro and in vivo analysis of select mutants reveals that the SAS-5–microtubule interaction facilitates centriole assembly in C. elegans embryos. Our findings lead us to propose that the interdependence of SAS-5 oligomerization and microtubule binding reflects an avidity mechanism, which also strengthens SAS-5 associations with other centriole components and, thus, promotes organelle assembly.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Veeren M Chauhan ◽  
David I Pritchard

AbstractCaenorhabditis elegans is a free-living nematode that resides in soil and typically feeds on bacteria. We postulate that haematophagic C. elegans could provide a model to evaluate vaccine responses to intestinal proteins from hematophagous nematode parasites, such as Necator americanus. Human erythrocytes, fluorescently labelled with tetramethylrhodamine succinimidyl ester, demonstrated a stable bright emission and facilitated visualization of feeding events with fluorescent microscopy. C. elegans were observed feeding on erythrocytes and were shown to rupture red blood cells upon capture to release and ingest their contents. In addition, C. elegans survived equally on a diet of erythrocytes. There was no statistically significant difference in survival when compared with a diet of Escherichia coli OP50. The enzymes responsible for the digestion and detoxification of haem and haemoglobin, which are key components of the hookworm vaccine, were found in the C. elegans intestine. These findings support our postulate that free-living nematodes could provide a model for the assessment of neutralizing antibodies to current and future hematophagous parasite vaccine candidates.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 2002 ◽  
Author(s):  
Cristina Moliner ◽  
Lillian Barros ◽  
Maria Dias ◽  
Víctor López ◽  
Elisa Langa ◽  
...  

Tagetes erecta L. has long been consumed for culinary and medicinal purposes in different countries. The aim of this study was to explore the potential benefits from two cultivars of T. erecta related to its polyphenolic profile as well as antioxidant and anti-aging properties. The phenolic composition was analyzed by LC-DAD-ESI/MSn. Folin-Ciocalteu, DPPH·, and FRAP assays were performed in order to evaluate reducing antiradical properties. The neuroprotective potential was evaluated using the enzymes acetylcholinesterase and monoamine oxidase. Caenorhabditis elegans was used as an in vivo model to assess extract toxicity, antioxidant activity, delayed aging, and reduced β-amyloid toxicity. Both extracts showed similar phenolic profiles and bioactivities. The main polyphenols found were laricitin and its glycosides. No acute toxicity was detected for extracts in the C. elegans model. T. erecta flower extracts showed promising antioxidant and neuroprotective properties in the different tested models. Hence, these results may add some information supporting the possibilities of using these plants as functional foods and/or as nutraceutical ingredients.


2005 ◽  
Vol 73 (11) ◽  
pp. 7236-7242 ◽  
Author(s):  
Creg Darby ◽  
Sandya L. Ananth ◽  
Li Tan ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


1990 ◽  
Vol 10 (6) ◽  
pp. 2765-2773
Author(s):  
W L Zeng ◽  
C M Alarcon ◽  
J E Donelson

Genomic DNAs of the related parasitic nematodes Onchocerca volvulus and Dirofilariae immitis, and a cDNA library of O. volvulus, were examined for the presence of the 22-nucleotide spliced leader (SL) found at the 5' ends of 10 to 15% of the mRNAs in the free-living nematode Caenorhabditis elegans. As in C. elegans, genes for the SL RNA are linked to the repetitive 5S rRNA genes of O. volvulus and D. immitis, but unlike C. elegans, they are in the same orientation as the 5S rRNA genes within the repeat unit. In O. volvulus the SL sequence is also encoded at more than 30 additional genomic locations and occurs at interior sites within many transcripts. Sequence determinations of four different cDNAs of O. volvulus, each containing an internal copy of the SL within a conserved 25mer, and one corresponding genomic DNA clone indicate that this sequence is not trans spliced onto these RNAs, but is encoded within the genes. The RNAs of two of these cDNAs appear to be developmentally regulated, since they occur in adult O. volvulus but were not detected in the infective L3 stage larvae. In contrast, actin mRNAs are present at all developmental stages, and at least one actin mRNA species contains a trans-spliced 5' SL. The internal locations of the SL in various transcripts and its perfect sequence conservation among parasitic and free-living nematodes argues that it serves specific, and perhaps multiple, functions for these organisms.


Genetics ◽  
2020 ◽  
Vol 216 (4) ◽  
pp. 931-945 ◽  
Author(s):  
Georgina Gómez-Saldivar ◽  
Jaime Osuna-Luque ◽  
Jennifer I. Semple ◽  
Dominique A. Glauser ◽  
Sophie Jarriault ◽  
...  

Differential gene expression across cell types underlies development and cell physiology in multicellular organisms. Caenorhabditis elegans is a powerful, extensively used model to address these biological questions. A remaining bottleneck relates to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce the RNA Polymerase DamID (RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit to create transcriptional footprints via methyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, in sorted embryonic blastomeres and in different tissues from intact young adults by driving tissue-specific Dam fusion expression. We obtained meaningful transcriptional footprints in line with RNA-sequencing (RNA-seq) studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 3901 candidate genes with putatively active transcription in XXX cells, including the few previously known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX cells and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of RNA polymerase footprints in specific tissues of C. elegans without the need for cell sorting or RNA tagging.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 811
Author(s):  
Cristina Moliner ◽  
Víctor López ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Isabel C. F. R. Ferreira ◽  
...  

Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid being the predominant compound in the extract, which also exhibited a strong antioxidant capacity in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover, R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or nutraceutical potential.


Sign in / Sign up

Export Citation Format

Share Document