scholarly journals Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term Responses to Disturbance in Temperate Forests

2019 ◽  
Vol 10 ◽  
Author(s):  
Ernest D. Osburn ◽  
Steven G. McBride ◽  
Frank O. Aylward ◽  
Brian D. Badgley ◽  
Brian D. Strahm ◽  
...  
2021 ◽  
Vol 105 (18) ◽  
pp. 7035-7050
Author(s):  
Qianwen Liu ◽  
Shixi Wang ◽  
Kun Li ◽  
Jun Qiao ◽  
Yinshan Guo ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Fiona M. Seaton ◽  
Sabine Reinsch ◽  
Tim Goodall ◽  
Nicola White ◽  
Davey L. Jones ◽  
...  

AbstractThe response of soil microbial communities to a changing climate will impact global biogeochemical cycles, potentially leading to positive and negative feedbacks. However, our understanding of how soil microbial communities respond to climate change and the implications of these changes for future soil function is limited. Here, we assess the response of soil bacterial and fungal communities to long-term experimental climate change in a heathland organo-mineral soil. We analysed microbial communities using Illumina sequencing of the 16S rRNA gene and ITS2 region at two depths, from plots undergoing 4 and 18 years of in situ summer drought or warming. We also assessed the colonisation of Calluna vulgaris roots by ericoid and dark septate endophytic (DSE) fungi using microscopy after 16 years of climate treatment. We found significant changes in both the bacterial and fungal communities in response to drought and warming, likely mediated by changes in soil pH and electrical conductivity. Changes in the microbial communities were more pronounced after a longer period of climate manipulation. Additionally, the subsoil communities of the long-term warmed plots became similar to the topsoil. Ericoid mycorrhizal colonisation decreased with depth while DSEs increased; however, these trends with depth were removed by warming. We largely ascribe the observed changes in microbial communities to shifts in plant cover and subsequent feedback on soil physicochemical properties, especially pH. Our results demonstrate the importance of considering changes in soil microbial responses to climate change across different soil depths and after extended periods of time.


2021 ◽  
Vol 9 (5) ◽  
pp. 981
Author(s):  
Ying Gao ◽  
Xiaotian Xu ◽  
Junjun Ding ◽  
Fang Bao ◽  
Yashika G. De De Costa ◽  
...  

The response of microbial communities to continual and prolonged water exposure provides useful insight when facing global climate changes that cause increased and uneven precipitation and extreme rainfall events. In this study, we investigated an in situ manipulative experiment with four levels of water exposure (ambient precipitation +0%, +25%, +50%, and +100% of local annual mean precipitation) in a desert ecosystem of China. After 9 years of water addition, Illumina sequencing was used to analyze taxonomic compositions of the soil bacterial, archaeal, and fungal communities. The results showed significant increases in microbial biomass carbon (MBC) at higher amended precipitation levels, with the highest values reported at 100% precipitation. Furthermore, an increase in the bacterial species richness was observed along the water addition gradient. In addition, the relative abundance of several bacterial phyla, such as Proteobacteria, significantly increased, whereas that of some drought-tolerant taxa, including Actinobacteria, Firmicutes, and Bacteroidetes, decreased. In addition, the phyla Planctomycetes and Nitrospirae, associated with nitrification, positively responded to increased precipitation. Archaeal diversity significantly reduced under 100% treatment, with changes in the relative abundance of Thaumarchaeota and Euryarchaeota being the main contributors to shifts in the archaeal community. The fungal community composition was stable in response to water addition. Results from the Mantel test and structural equation models suggested that bacterial and archaeal communities reacted contrastingly to water addition. Bacterial community composition was directly affected by changing soil moisture and temperature, while archaeal community composition was indirectly affected by changing nitrogen availability. These findings highlight the importance of soil moisture and nitrogen in driving microbial responses to long-term precipitation changes in the desert ecosystem.


2017 ◽  
Vol 43 (2) ◽  
pp. 286 ◽  
Author(s):  
Dan-Mei CHEN ◽  
Ling YUAN ◽  
Jian-Guo HUANG ◽  
Jian-Hua JI ◽  
Hong-Qian HOU ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

2021 ◽  
Vol 496 ◽  
pp. 119398
Author(s):  
Ernest D. Osburn ◽  
Chelcy F. Miniat ◽  
Katherine J. Elliott ◽  
J.E. Barrett

Author(s):  
Yonggan Chen ◽  
Zhenhua Zhang ◽  
Haonan Zhang ◽  
Hongwei Luo ◽  
Zhen Li

2021 ◽  
Vol 220 ◽  
pp. 112414
Author(s):  
Jiahong Zhu ◽  
Aocheng Cao ◽  
Jiajia Wu ◽  
Wensheng Fang ◽  
Bin Huang ◽  
...  

Oecologia ◽  
2011 ◽  
Vol 167 (3) ◽  
pp. 793-807 ◽  
Author(s):  
Steven S. Perakis ◽  
Emily R. Sinkhorn ◽  
Jana E. Compton
Keyword(s):  

2018 ◽  
Vol 141 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Christine Heuck ◽  
Georg Smolka ◽  
Emily D. Whalen ◽  
Serita Frey ◽  
Per Gundersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document