scholarly journals Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland

Ecosystems ◽  
2021 ◽  
Author(s):  
Fiona M. Seaton ◽  
Sabine Reinsch ◽  
Tim Goodall ◽  
Nicola White ◽  
Davey L. Jones ◽  
...  

AbstractThe response of soil microbial communities to a changing climate will impact global biogeochemical cycles, potentially leading to positive and negative feedbacks. However, our understanding of how soil microbial communities respond to climate change and the implications of these changes for future soil function is limited. Here, we assess the response of soil bacterial and fungal communities to long-term experimental climate change in a heathland organo-mineral soil. We analysed microbial communities using Illumina sequencing of the 16S rRNA gene and ITS2 region at two depths, from plots undergoing 4 and 18 years of in situ summer drought or warming. We also assessed the colonisation of Calluna vulgaris roots by ericoid and dark septate endophytic (DSE) fungi using microscopy after 16 years of climate treatment. We found significant changes in both the bacterial and fungal communities in response to drought and warming, likely mediated by changes in soil pH and electrical conductivity. Changes in the microbial communities were more pronounced after a longer period of climate manipulation. Additionally, the subsoil communities of the long-term warmed plots became similar to the topsoil. Ericoid mycorrhizal colonisation decreased with depth while DSEs increased; however, these trends with depth were removed by warming. We largely ascribe the observed changes in microbial communities to shifts in plant cover and subsequent feedback on soil physicochemical properties, especially pH. Our results demonstrate the importance of considering changes in soil microbial responses to climate change across different soil depths and after extended periods of time.

2021 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Wen-Jing Gong ◽  
Zi-Fan Niu ◽  
Xing-Run Wang ◽  
He-Ping Zhao

The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.


2021 ◽  
Author(s):  
Carla Cruz Paredes ◽  
Daniel Tajmel ◽  
Johannes Rousk

<p>Temperature is one of the most important environmental factors controlling both microbial growth and respiration. Warmer temperatures accelerate the rate at which microorganisms respire. Therefore, it is expected that climate warming will induce losses of carbon to the atmosphere through soil microbial respiration, representing a positive feedback to climate warming. However, there are multiple gaps in our understanding on responses of microorganisms to warming. For instance, long-term experiments have shown that the increase in soil respiration found in warming experiments diminishes with time, recovering to ambient values. This suggests that soil C losses might not be as extensive as previously suggested. This can be due to substrate depletion or shifts in the microbial community composition that led to thermal adaptation. To test thermal adaptation of soil microbial communities to their climate, variation along latitudinal gradients is a useful context. Such geographical gradients have long-term and large temperature differences thus patterns in thermal adaptation should have had sufficient time for ecological and evolutionary processes to act, allowing us to test if soil microbial communities have adapted to thermal regimes.</p><p>We investigated a latitudinal gradient across Europe with 76 sites that spanned a gradient of decadal mean annual temperature (MAT) from -3.1 to 18.3°C. We investigated if respiration, bacterial and fungal growth responses were adapted to long-term temperature differences in this gradient. We did this by estimating the temperature dependences of bacterial growth, fungal growth and respiration. We determined the temperature sensitivity (Q<sub>10</sub>), the minimum temperature (T<sub>min</sub>) for growth and the optimum temperature (T<sub>opt</sub>) for growth. These metrics were then correlated to MAT. Additionally, we sequenced bacterial (16S) and fungal (ITS) amplicons from the different sites to also assess variance in community composition and structure. We hypothesized that microbes should be adapted to their historical temperature; microbial communities in warmer environments will be warm-shifted and vice versa.</p><p>We could effectively represent temperature relationships for bacterial growth, fungal growth, and respiration for all soils. As expected, temperature relationships correlated with the environmental temperature of the site, such that higher temperatures resulted in microbial communities with warm-adapted growth and respiration. This could be seen as a strong positive correlation between T<sub>min</sub> values and environmental temperatures which range from -14 to -5°C for bacteria, -11.5 to -4°C for fungi and -8 to -2°C for respiration. We found that MAT explains the microbial communities’ temperature dependencies for bacterial growth and respiration, but not for fungal growth. With 1°C rise in MAT, T<sub>min</sub> increased 0.17°C for bacterial growth, while T<sub>min</sub> for respiration increased by 0.11. Similarly, bacterial and fungal communities’ composition were correlated with MAT (r<sup>2</sup>=0.38; r<sup>2</sup>=0.62), and T<sub>min</sub> (r<sup>2</sup>=0.16; r<sup>2</sup>=0.21). These findings suggest that thermal adaptation occurs in processes such as bacterial growth and respiration, probably due to shifts in the microbial community composition. However, fungal growth seems to be less sensitive to changes in temperature, even though fungal communities’ composition was correlated with MAT.</p>


2017 ◽  
Vol 7 (3) ◽  
pp. 855-862 ◽  
Author(s):  
Emma J. Sayer ◽  
Anna E. Oliver ◽  
Jason D. Fridley ◽  
Andrew P. Askew ◽  
Robert T. E. Mills ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7014 ◽  
Author(s):  
Lukas Beule ◽  
Ko-Hsuan Chen ◽  
Chih-Ming Hsu ◽  
Cheryl Mackowiak ◽  
Jose C.B. Dubeux Jr. ◽  
...  

BackgroundCultivars of bahiagrass (Paspalum notatumFlüggé) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance.ObjectivesThis study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities.MethodsSix bahiagrass cultivars (‘Argentine’, ‘Pensacola’, ‘Sand Mountain’, ‘Tifton 9’, ‘TifQuik’, and ‘UF-Riata’) were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano.ResultsThe soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizingNitrospirawas greater under ‘Sand Mountain’ than ‘UF-Riata’. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists.ConclusionsOur results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance ofNitrospiramembers in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation.


2012 ◽  
Vol 78 (24) ◽  
pp. 8587-8594 ◽  
Author(s):  
Melissa A. Cregger ◽  
Christopher W. Schadt ◽  
Nate G. McDowell ◽  
William T. Pockman ◽  
Aimée T. Classen

ABSTRACTMicrobial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the structure and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, −50%, or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath piñon pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynamics, background climatic variability, and the composition of the associated aboveground community.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 165
Author(s):  
Jinglei Zhang ◽  
Shirong Liu ◽  
Cuiju Liu ◽  
Hui Wang ◽  
Junwei Luan ◽  
...  

Prolonged drought results in serious ecological consequences in forest ecosystems, particularly for soil microbial communities. However, much is unknown about soil microbial communities in their response to long-term consecutive droughts in warm-temperate forests. Here, we conducted a 7-year manipulated throughfall reduction experiment (TFR) to examine the responses of bacterial and fungal communities in terms of richness and networks. Our results show that long-term TFR reduced bacterial, but not fungal, richness, with rare bacterial taxa being more sensitive to TFR than dominant taxa. The bacterial network under the TFR treatment featured a simpler network structure and fewer competitive links compared to the control, implying weakened interactions among bacterial species. Bacterial genes involved in xenobiotic biodegradation and metabolism, and lignin-degrading enzymes were enhanced under TFR treatment, which may be attributed to TFR-induced increases in fine root biomass and turnover. Our results indicate that soil bacterial communities are more responsive than fungi to long-term TFR in a warm-temperate oak forest, leading to potential consequences such as the degradation of recalcitrant organics in soil.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yongjian Chen ◽  
Jialiang Kuang ◽  
Pandeng Wang ◽  
Wensheng Shu ◽  
Albert Barberán

We are living in a new epoch—the Anthropocene, in which human activity is reshaping global biodiversity at an unprecedented rate. Increasing efforts are being made toward a better understanding of the associations between human activity and the geographic patterns in plant and animal communities. However, similar efforts are rarely applied to microbial communities. Here, we collected 472 forest soil samples across eastern China, and the bacterial and fungal communities in those samples were determined by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer region, respectively. By compiling human impact variables as well as climate and soil variables, our goal was to elucidate the association between microbial richness and human activity when climate and soil variables are taken into account. We found that soil microbial richness was associated with human activity. Specifically, human population density was positively associated with the richness of bacteria, nitrifying bacteria and fungal plant pathogens, but it was negatively associated with the richness of cellulolytic bacteria and ectomycorrhizal fungi. Together, these results suggest that the associations between geographic variations of soil microbial richness and human activity still persist when climate and soil variables are taken into account and that these associations vary among different microbial taxonomic and functional groups.


Sign in / Sign up

Export Citation Format

Share Document