scholarly journals Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas

2020 ◽  
Vol 11 ◽  
Author(s):  
Wen Qin ◽  
Pengfei Song ◽  
Gonghua Lin ◽  
YanGan Huang ◽  
Lei Wang ◽  
...  
2019 ◽  
Author(s):  
Aspen T. Reese ◽  
Katia S. Chadaideh ◽  
Caroline E. Diggins ◽  
Mark Beckel ◽  
Peggy Callahan ◽  
...  

AbstractDomestication may have had convergent effects on the microbiota of domesticates and humans through analogous ecological shifts. Comparing the gut microbiota of domestic and related wild mammals plus humans and chimpanzees, we found consistent shifts in composition in domestic animals and in humans from industrialized but not traditional societies. Reciprocal diet switches in mice and canids demonstrated that diet played a dominant role in shaping the domestic gut microbiota, with stronger responses in the member of the wild-domestic pair with higher dietary and microbial diversity. Laboratory mice recovered wild-like microbial diversity and responsiveness with experimental colonization. We conclude that domestication and industrialization have similarly impacted the gut microbiota, emphasizing the utility of domestic animal models and diets for understanding host-microbial interactions in rapidly changing environments.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245126
Author(s):  
Hasan Ejaz ◽  
Sonia Younas ◽  
Khalid O. A. Abosalif ◽  
Kashaf Junaid ◽  
Badr Alzahrani ◽  
...  

Colonization of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae as animal gut microbiota is a substantial global threat. This study aimed to determine the molecular characterization of blaSHV, blaTEM, and blaCTX-M variants in animals, as well as to evaluate the antimicrobial resistance conferred by these genes. We prospectively analyzed 1273 fecal specimens of farm and domestic animals for the isolation of enterobacteria that had the ESBL phenotype by using biochemical methods. The extracted genes were amplified by polymerase chain reaction and sequenced for the characterization of blaSHV, blaTEM, and blaCTX-M variants. The drug-resistance spectrum and hierarchical clusters were analyzed against 19 antibacterial agents. Out of 245 (19.2%) ESBL enterobacteria, 180 (75.5%) Escherichia coli and 34 (13.9%) Klebsiella pneumoniae were prevalent species. A total of 73.9% blaCTX-M, 26.1% blaTEM, and 14.2% blaSHV were found among the enterobacteria; however, their association with farm or domestic animals was not statistically significant. The distribution of bla gene variants showed the highest number of blaCTX-M-1 (133; 54.3%), followed by blaCTX-M-15 (28; 11.4%), blaTEM-52 (40; 16.3%), and blaSHV-12 (22; 9%). In addition, 84.5% of the enterobacteria had the integrons intI1. We observed ±100% enterobacteria resistant to cephalosporin, 7 (2.9%) to colistin (minimum inhibitory concentration breakpoint ≥4 μg/mL), 9 (3.7%) to piperacillin-tazobactam, 11 (4.5%) to imipenem, 14 (5.7%) to meropenem, and 18 (7.3%) to cefoperazone-sulbactam, without statistically significant association. Animal gut microbiota contain a considerable number of blaCTX-M, blaTEM, blaSHV, and integrons, which are a potential source of acquired extensive drug resistance in human strains and leaves fewer therapeutic substitutes.


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document