scholarly journals Diverse Bacterial Communities From Qaidam Basin of the Qinghai–Tibet Plateau: Insights Into Variations in Bacterial Diversity Across Different Regions

2020 ◽  
Vol 11 ◽  
Author(s):  
Wei Zhang ◽  
Ali Bahadur ◽  
Gaosen Zhang ◽  
Binglin Zhang ◽  
Xiukun Wu ◽  
...  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Rui Xing ◽  
Qing‐bo Gao ◽  
Fa‐qi Zhang ◽  
Jiu‐li Wang ◽  
Shi‐long Chen

2021 ◽  
Vol 9 (2) ◽  
pp. 262
Author(s):  
Wei Zhang ◽  
Ali Bahadur ◽  
Wasim Sajjad ◽  
Gaosen Zhang ◽  
Fahad Nasir ◽  
...  

Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai–Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15 soil samples collected from different cold-desert habitats, including human-disturbed, vegetation coverage, desert land, and sand dune. The abundance-based coverage estimator, Shannon, and Chao indices showed that the bacterial diversity and abundance of the cold-desert were high. A significant variation reported in the bacterial diversity and community composition across the study area. Proteobacteria accounted for the largest proportion (12.4–55.7%) of all sequences, followed by Actinobacteria (9.2–39.7%), Bacteroidetes (1.8–21.5%), and Chloroflexi (2.7–12.6%). Furthermore, unclassified genera dominated in human-disturbed habitats. The community profiles of GeErMu, HongLiangHe, and CuoNaHu sites were different and metagenomic biomarkers were higher (22) in CuoNaHu sites. Among the soil physicochemical variables, the total nitrogen and electric conductivity significantly influenced the bacterial community structure. In conclusion, this study provides information regarding variation in diversity and composition of bacterial communities and elucidates the association between bacterial community structures and soil physicochemical variables in cold-desert habitats of Qinghai–Tibet Plateau.


Author(s):  
Ali Bahadur ◽  
Wei Zhang ◽  
Wasim Sajjad ◽  
Fahad Nasir ◽  
Gaosen Zhang ◽  
...  

2017 ◽  
Vol 430 ◽  
pp. 12-20 ◽  
Author(s):  
QiuFang Chang ◽  
ZhongPing Lai ◽  
FuYuan An ◽  
HaiLei Wang ◽  
YanBin Lei ◽  
...  

2003 ◽  
Vol 140 (6) ◽  
pp. 707-719 ◽  
Author(s):  
QIU NANSHENG

The thermal properties of rocks in the upper crust of the Qaidam basin are given based on measurements of 98 thermal conductivities and 50 heat production values. Nineteen new measured heat flow data were obtained from thermal conductivity data and systematic steady-state temperature data. This paper contributes 28 calculated heat flow values for the basin for the first time. Examination of 47 heat flow values, ranging from 31.3 to 70.4 mW/m2 with an average value of 52.6±9.6 mW/m2, gives the heat flow distribution character of the basin: high heat flows over 60 mW/m2 are distributed in the western and central parts of the basin. Lower heat flow values are found in the eastern part and north marginal area of the basin, with values less 40 mW/m2. The Qaidam basin heatflow data show a linear relationship between heatflow and heat production, based on thermal structure analysis. The thermal structure of the lithosphere is characterized as having a ‘hot crust’ but ‘cold mantle’. Heat production in the upper crust is a significant source of heat in the basin and contributes up to 56.8% of the surface heat flow. The heat flow province is of great geophysical significance, and the thermal structure of the area gives clues about the regional geodynamics. Study of the Qaidam basin thermal structure shows that the crust has been highly active, particularly during its most recent geological evolution. This corresponds to Himalayan tectonic movements during latest Eocene to Quaternary times in the region of the Qinghai–Tibet Plateau. Since the Qaidam basin is in the northeastern area of the Qinghai–Tibet Plateau, the heat flow values and the thermal structure of the basin may give some insight into the thermal state of the plateau, and study of thermal regime of the Qaidam basin could in turn provide useful information about the tectonics of the Qinghai–Tibet Plateau.


Sign in / Sign up

Export Citation Format

Share Document