scholarly journals pH Homeostasis and Sodium Ion Pumping by Multiple Resistance and pH Antiporters in Pyrococcus furiosus

2021 ◽  
Vol 12 ◽  
Author(s):  
Dominik K. Haja ◽  
Michael W. W. Adams

Multiple Resistance and pH (Mrp) antiporters are seven-subunit complexes that couple transport of ions across the membrane in response to a proton motive force (PMF) and have various physiological roles, including sodium ion sensing and pH homeostasis. The hyperthermophilic archaeon Pyrococcus furiosus contains three copies of Mrp encoding genes in its genome. Two are found as integral components of two respiratory complexes, membrane bound hydrogenase (MBH) and the membrane bound sulfane sulfur reductase (MBS) that couple redox activity to sodium translocation, while the third copy is a stand-alone Mrp. Sequence alignments show that this Mrp does not contain an energy-input (PMF) module but contains all other predicted functional Mrp domains. The P. furiosus Mrp deletion strain exhibits no significant changes in optimal pH or sodium ion concentration for growth but is more sensitive to medium acidification during growth. Cell suspension hydrogen gas production assays using the deletion strain show that this Mrp uses sodium as the coupling ion. Mrp likely maintains cytoplasmic pH by exchanging protons inside the cell for extracellular sodium ions. Deletion of the MBH sodium-translocating module demonstrates that hydrogen gas production is uncoupled from ion pumping and provides insights into the evolution of this Mrp-containing respiratory complex.

2013 ◽  
Vol 289 (5) ◽  
pp. 2873-2879 ◽  
Author(s):  
Gina L. Lipscomb ◽  
Gerrit J. Schut ◽  
Michael P. Thorgersen ◽  
William J. Nixon ◽  
Robert M. Kelly ◽  
...  

2018 ◽  
Vol 293 (43) ◽  
pp. 16687-16696 ◽  
Author(s):  
Chang-Hao Wu ◽  
Gerrit J. Schut ◽  
Farris L. Poole ◽  
Dominik K. Haja ◽  
Michael W. W. Adams

Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.


2021 ◽  
pp. 2100901
Author(s):  
Natalia Voronina ◽  
Najma Yaqoob ◽  
Hee Jae Kim ◽  
Kug‐Seung Lee ◽  
Hee‐Dae Lim ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1784
Author(s):  
Matthias Schilde ◽  
Dirk von Soosten ◽  
Liane Hüther ◽  
Susanne Kersten ◽  
Ulrich Meyer ◽  
...  

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.


2021 ◽  
Vol 380 ◽  
pp. 138156
Author(s):  
Devendrasinh Darbar ◽  
Nitin Muralidharan ◽  
Raphaël P. Hermann ◽  
Jagjit Nanda ◽  
Indranil Bhattacharya

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nur Aimi Jani ◽  
Choonyian Haw ◽  
Weesiong Chiu ◽  
Saadah Abdul Rahman ◽  
Poisim Khiew ◽  
...  

Current work reports the study of Ag nanocrystals (NCs) decorated doubly anodized (DA) TiO2 nanotubes (NTs) thin film as an efficient photoelectrode material for water splitting and photocatalytic hydrogen gas production. DA process has been shown to be capable of producing less defective NTs and creating additional spacious gaps in between NT bundles to allow efficient and uniform integration of Ag NCs. By employing photoreduction method, Ag NCs can be deposited directly onto NTs, where the size and density of coverage can be maneuvered by merely varying the concentration of Ag precursors. Field emission scanning electron microscope (FESEM) images show that the Ag NCs with controllable size are homogeneously decorated onto the walls of NTs with random yet uniform distribution. X-ray diffraction (XRD) results confirm the formation of anatase TiO2 NTs and Ag NCs, which can be well indexed to standard patterns. The decoration of metallic Ag NCs onto the surface of NTs demonstrates a significant enhancement in the photoconversion efficiency as compared to that of pristine TiO2 NTs. Additionally, the as-prepared nanocomposite film also shows improved efficiency when used as a photocatalyst platform in the production of hydrogen gas. Such improvement in the performance of water splitting and photocatalytic hydrogen gas production activity can be credited to the surface plasmonic resonance of Ag NCs present on the surface of the NTs, which renders improved light absorption and better charge separation. The current work can serve as a model of study for designing more advanced nanoarchitecture photoelectrode for renewable energy application.


Sign in / Sign up

Export Citation Format

Share Document