ion pumping
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Maria-Cecilia Chiriac ◽  
Paul-Adrian Bulzu ◽  
Adrian-Stefan Andrei ◽  
Yusuke Okazaki ◽  
Shinichi Nakano ◽  
...  

Abstract Background. The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR, or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters, however, their diversity, abundance, and role in surface waters is largely unexplored. Here we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages and to pinpoint their lifestyle (free-living vs. host-associated) in freshwater samples.Results. A total of 282 metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (263 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02 – 14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and lifestyles, ranging from free-living to host- or particle-associated. Although some complexes of the electron transport chain were present in the CPRs MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. Conclusions. A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation was assumed to be mostly host-associated, we also found organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be free-living or associated with ‘lake snow’ particles (ABY1, Gracilibacteria), extending the knowledge regarding their lifestyle.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009333
Author(s):  
Mathieu Le Verge-Serandour ◽  
Hervé Turlier

Fluid-filled biological cavities are ubiquitous, but their collective dynamics has remained largely unexplored from a physical perspective. Based on experimental observations in early embryos, we propose a model where a cavity forms through the coarsening of myriad of pressurized micrometric lumens, that interact by ion and fluid exchanges through the intercellular space. Performing extensive numerical simulations, we find that hydraulic fluxes lead to a self-similar coarsening of lumens in time, characterized by a robust dynamic scaling exponent. The collective dynamics is primarily controlled by hydraulic fluxes, which stem from lumen pressures differences and are dampened by water permeation through the membrane. Passive osmotic heterogeneities play, on the contrary, a minor role on cavity formation but active ion pumping can largely modify the coarsening dynamics: it prevents the lumen network from a collective collapse and gives rise to a novel coalescence-dominated regime exhibiting a distinct scaling law. Interestingly, we prove numerically that spatially biasing ion pumping may be sufficient to position the cavity, suggesting a novel mode of symmetry breaking to control tissue patterning. Providing generic testable predictions, our model forms a comprehensive theoretical basis for hydro-osmotic interaction between biological cavities, that shall find wide applications in embryo and tissue morphogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominik K. Haja ◽  
Michael W. W. Adams

Multiple Resistance and pH (Mrp) antiporters are seven-subunit complexes that couple transport of ions across the membrane in response to a proton motive force (PMF) and have various physiological roles, including sodium ion sensing and pH homeostasis. The hyperthermophilic archaeon Pyrococcus furiosus contains three copies of Mrp encoding genes in its genome. Two are found as integral components of two respiratory complexes, membrane bound hydrogenase (MBH) and the membrane bound sulfane sulfur reductase (MBS) that couple redox activity to sodium translocation, while the third copy is a stand-alone Mrp. Sequence alignments show that this Mrp does not contain an energy-input (PMF) module but contains all other predicted functional Mrp domains. The P. furiosus Mrp deletion strain exhibits no significant changes in optimal pH or sodium ion concentration for growth but is more sensitive to medium acidification during growth. Cell suspension hydrogen gas production assays using the deletion strain show that this Mrp uses sodium as the coupling ion. Mrp likely maintains cytoplasmic pH by exchanging protons inside the cell for extracellular sodium ions. Deletion of the MBH sodium-translocating module demonstrates that hydrogen gas production is uncoupled from ion pumping and provides insights into the evolution of this Mrp-containing respiratory complex.


2021 ◽  
Vol 59 ◽  
pp. 431-445
Author(s):  
Guolang Zhou ◽  
Linlin Chen ◽  
Yanhong Chao ◽  
Xiaowei Li ◽  
Guiling Luo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hirohisa Tamagawa ◽  
Titus Mulembo ◽  
Bernard Delalande ◽  
Kelath Murali Manoj

The characteristics of the experimentally measured trans-membrane potential (TMP) generated across an artificial membrane intervening two KCl solutions were found to be explicable using simple principles of electrochemistry, as given within the context of Association Induction Hypothesis (AIH). AIH suggests that the heterogeneous ion distribution which is caused by the adsorption of a mobile ion onto an immobile phase (bearing charge opposite to that of the mobile ion) is responsible for the TMP generation. Therefore, this work proposes AIH could be an important foundation for explaining the origin of TMP. Our experimental observation of nonzero TMP across an electrically charged non-biological/synthetic membrane is found to be intriguing, as such outcomes are classically associated to ion-pumping activities of membrane proteins in a living matter. Another experimental observation of nonzero potential across a neutral membrane is even more intriguing. Such a potential behavior is more in harmony with murburn concept, a new proposal for explaining redox metabolic and physiological phenomena.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323363
Author(s):  
Ester Pagano ◽  
Joshua E Elias ◽  
Georg Schneditz ◽  
Svetlana Saveljeva ◽  
Lorraine M Holland ◽  
...  

ObjectivePrimary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers.DesignMice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays.ResultsHere, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors.ConclusionsActivation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages’ ability to create a tumour-permissive environment.


2021 ◽  
Vol 118 (13) ◽  
pp. e2020486118
Author(s):  
Ji-Hye Yun ◽  
Xuanxuan Li ◽  
Jianing Yue ◽  
Jae-Hyun Park ◽  
Zeyu Jin ◽  
...  

Chloride ion–pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl− into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation–diffusion process upon light-triggered retinal isomerization.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Keiichi Inoue ◽  
Masayuki Karasuyama ◽  
Ryoko Nakamura ◽  
Masae Konno ◽  
Daichi Yamada ◽  
...  

AbstractMicrobial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were suggested by a protein BLAST search in several protein databases, the ML-based method selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experimentally determined by expressing proteins with the Escherichia coli system, and 32 (82%, p = 7.025 × 10−5) actually showed red-shift gains. In addition, four showed red-shift gains >20 nm, and two were found to have desirable ion-transporting properties, indicating that they would be potentially useful in optogenetics. These findings suggest that data-driven ML-based approaches play effective roles in the experimental design of rhodopsin and other photobiological studies. (141/150 words).


Sign in / Sign up

Export Citation Format

Share Document