scholarly journals Editorial: Codon Usage and Dinucleotide Composition of Virus Genomes: From the Virus-Host Interaction to the Development of Vaccines

2021 ◽  
Vol 12 ◽  
Author(s):  
Rosa M. Pintó ◽  
Cara C. Burns ◽  
Gonzalo Moratorio
Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 912
Author(s):  
Saadullah Khattak ◽  
Mohd Ahmar Rauf ◽  
Qamar Zaman ◽  
Yasir Ali ◽  
Shabeen Fatima ◽  
...  

The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.


2013 ◽  
Vol 87 (3) ◽  
pp. 1919-1919 ◽  
Author(s):  
Kenneth M. Stedman ◽  
Nicholas R. Kosmicki ◽  
Geoffrey S. Diemer

2013 ◽  
Vol 87 (3) ◽  
pp. 1920-1921 ◽  
Author(s):  
Mark Young ◽  
Benjamin Bolduc ◽  
Daniel P. Shaughnessy ◽  
Francisco F. Roberto ◽  
Yuri I. Wolf ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1847
Author(s):  
Naveen Kumar ◽  
Rahul Kaushik ◽  
Chandana Tennakoon ◽  
Vladimir N. Uversky ◽  
Anamika Mishra ◽  
...  

Many viruses that cause serious diseases in humans and animals, including the betacoronaviruses (beta-CoVs), such as SARS-CoV, MERS-CoV, and the recently identified SARS-CoV-2, have natural reservoirs in bats. Because these viruses rely entirely on the host cellular machinery for survival, their evolution is likely to be guided by the link between the codon usage of the virus and that of its host. As a result, specific cellular microenvironments of the diverse hosts and/or host tissues imprint peculiar molecular signatures in virus genomes. Our study is aimed at deciphering some of these signatures. Using a variety of genetic methods we demonstrated that trends in codon usage across chiroptera-hosted CoVs are collaboratively driven by geographically different host-species and temporal-spatial distribution. We not only found that chiroptera-hosted CoVs are the ancestors of SARS-CoV-2, but we also revealed that SARS-CoV-2 has the codon usage characteristics similar to those seen in CoVs infecting the Rhinolophus sp. Surprisingly, the envelope gene of beta-CoVs infecting Rhinolophus sp., including SARS-CoV-2, had extremely high CpG levels, which appears to be an evolutionarily conserved trait. The dissection of the furin cleavage site of various CoVs infecting hosts revealed host-specific preferences for arginine codons; however, arginine is encoded by a wider variety of synonymous codons in the murine CoV (MHV-A59) furin cleavage site. Our findings also highlight the latent diversity of CoVs in mammals that has yet to be fully explored.


2017 ◽  
Vol 39 (8) ◽  
pp. 855-866 ◽  
Author(s):  
Siddiq Ur Rahman ◽  
Yuanhui Mao ◽  
Shiheng Tao

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1173
Author(s):  
Garry A. Duncan ◽  
David D. Dunigan ◽  
James L. Van Etten

Viruses rely on their host’s translation machinery for the synthesis of their own proteins. Problems belie viral translation when the host has a codon usage bias (CUB) that is different from an infecting virus due to differences in the GC content between the host and virus genomes. Here, we examine the hypothesis that chloroviruses adapted to host CUB by acquisition and selection of tRNAs that at least partially favor their own CUB. The genomes of 41 chloroviruses comprising three clades, each infecting a different algal host, have been sequenced, assembled and annotated. All 41 viruses not only encode tRNAs, but their tRNA genes are located in clusters. While differences were observed between clades and even within clades, seven tRNA genes were common to all three clades of chloroviruses, including the tRNAArg gene, which was found in all 41 chloroviruses. By comparing the codon usage of one chlorovirus algal host, in which the genome has been sequenced and annotated (67% GC content), to that of two of its viruses (40% GC content), we found that the viruses were able to at least partially overcome the host’s CUB by encoding tRNAs that recognize AU-rich codons. Evidence presented herein supports the hypothesis that a chlorovirus tRNA cluster was present in the most recent common ancestor (MRCA) prior to divergence into three clades. In addition, the MRCA encoded a putative isoleucine lysidine synthase (TilS) that remains in 39/41 chloroviruses examined herein, suggesting a strong evolutionary pressure to retain the gene. TilS alters the anticodon of tRNAMet that normally recognizes AUG to then recognize AUA, a codon for isoleucine. This is advantageous to the chloroviruses because the AUA codon is 12–13 times more common in the chloroviruses than their host, further helping the chloroviruses to overcome CUB. Among large DNA viruses infecting eukaryotes, the presence of tRNA genes and tRNA clusters appear to be most common in the Phycodnaviridae and, to a lesser extent, in the Mimiviridae.


2016 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Azeem Mehmood Butt ◽  
Izza Nasrullah ◽  
Raheel Qamar ◽  
Yigang Tong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document