scholarly journals Benchmarking cryo-EM Single Particle Analysis Workflow

Author(s):  
Laura Y. Kim ◽  
William J. Rice ◽  
Edward T. Eng ◽  
Mykhailo Kopylov ◽  
Anchi Cheng ◽  
...  
2018 ◽  
Author(s):  
Laura Y. Kim ◽  
William J. Rice ◽  
Edward T. Eng ◽  
Mykhailo Kopylov ◽  
Anchi Cheng ◽  
...  

AbstractCryo electron microscopy facilities running multiple instruments and serving users with varying skill levels need a robust and reliable method for benchmarking both the hardware and software components of their single particle analysis workflow. The workflow is complex, with many bottlenecks existing at the specimen preparation, data collection and image analysis steps; the samples and grid preparation can be of unpredictable quality, there are many different protocols for microscope and camera settings, and there is a myriad of software programs for analysis that can depend on dozens of settings chosen by the user. For this reason, we believe it is important to benchmark the entire workflow, using a standard sample and standard operating procedures, on a regular basis. This provides confidence that all aspects of the pipeline are capable of producing maps to high resolution. Here we describe benchmarking procedures using a test sample, rabbit muscle aldolase.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1330-1332
Author(s):  
Zuzana Hlavenková ◽  
Dimple Karia ◽  
Miloš Malínský ◽  
Daniel Němeček ◽  
Fanis Grollios ◽  
...  

2001 ◽  
Vol 32 ◽  
pp. 873-874
Author(s):  
S. TOHNO ◽  
S. HAYAKAWA ◽  
A. NAKAMURA ◽  
A. HAMAMOTO ◽  
M. SUZUKI ◽  
...  

2021 ◽  
pp. 107695
Author(s):  
C.O.S. Sorzano ◽  
D. Semchonok ◽  
S.-C. Lin ◽  
Y.-C. Lo ◽  
J.L. Vilas ◽  
...  

2013 ◽  
Vol 135 (39) ◽  
pp. 14528-14531 ◽  
Author(s):  
Andrew P. Ault ◽  
Timothy L. Guasco ◽  
Olivia S. Ryder ◽  
Jonas Baltrusaitis ◽  
Luis A. Cuadra-Rodriguez ◽  
...  

2018 ◽  
Vol 294 (5) ◽  
pp. 1602-1608 ◽  
Author(s):  
Xiunan Yi ◽  
Eric J. Verbeke ◽  
Yiran Chang ◽  
Daniel J. Dickinson ◽  
David W. Taylor

Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.


1990 ◽  
Vol 21 ◽  
pp. S605-S608 ◽  
Author(s):  
Erik Swietlicki ◽  
Göran Lövestam ◽  
Uwe Wätjen

Sign in / Sign up

Export Citation Format

Share Document