Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis

2013 ◽  
Vol 135 (39) ◽  
pp. 14528-14531 ◽  
Author(s):  
Andrew P. Ault ◽  
Timothy L. Guasco ◽  
Olivia S. Ryder ◽  
Jonas Baltrusaitis ◽  
Luis A. Cuadra-Rodriguez ◽  
...  
2016 ◽  
Author(s):  
S. Schmidt ◽  
J. Schneider ◽  
T. Klimach ◽  
S. Mertes ◽  
L. P. Schenk ◽  
...  

Abstract. In-situ single particle analysis of ice particle residuals (IPR) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January/February 2013. During the four week campaign more than 70000 out-of-cloud aerosol particles and 595 IPR were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPR were sampled during 273 hours while the station was covered by mixed-phase clouds at ambient temperatures between −27 °C and −6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. As outcome instrument specific marker peaks for the different investigated particle types were obtained and applied to the field data. The results show that the sampled IPR contain a larger relative amount of natural, primary aerosol, like soil dust (13 %) and minerals (11 %), in comparison to out-of-cloud aerosol particles (2 % and < 1 %, respectively). Additionally, anthropogenic aerosol particles, like particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPR than in the out-of-cloud aerosol. The out-of-cloud aerosol contained a large fraction of aged particles (30 %, including organic material and secondary inorganics), whereas this particle type was much less abundant (3 %) in the IPR. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPR in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPR.


Author(s):  
Christopher Lee ◽  
Abigail C. Dommer ◽  
Jamie M. Schiffer ◽  
Rommie E. Amaro ◽  
Vicki H. Grassian ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 575-594 ◽  
Author(s):  
Susan Schmidt ◽  
Johannes Schneider ◽  
Thomas Klimach ◽  
Stephan Mertes ◽  
Ludwig Paul Schenk ◽  
...  

Abstract. In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January–February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between −27 and −6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.


Sign in / Sign up

Export Citation Format

Share Document