scholarly journals DeepComplex: A Web Server of Predicting Protein Complex Structures by Deep Learning Inter-chain Contact Prediction and Distance-Based Modelling

2021 ◽  
Vol 8 ◽  
Author(s):  
Farhan Quadir ◽  
Raj S. Roy ◽  
Elham Soltanikazemi ◽  
Jianlin Cheng

Proteins interact to form complexes. Predicting the quaternary structure of protein complexes is useful for protein function analysis, protein engineering, and drug design. However, few user-friendly tools leveraging the latest deep learning technology for inter-chain contact prediction and the distance-based modelling to predict protein quaternary structures are available. To address this gap, we develop DeepComplex, a web server for predicting structures of dimeric protein complexes. It uses deep learning to predict inter-chain contacts in a homodimer or heterodimer. The predicted contacts are then used to construct a quaternary structure of the dimer by the distance-based modelling, which can be interactively viewed and analysed. The web server is freely accessible and requires no registration. It can be easily used by providing a job name and an email address along with the tertiary structure for one chain of a homodimer or two chains of a heterodimer. The output webpage provides the multiple sequence alignment, predicted inter-chain residue-residue contact map, and predicted quaternary structure of the dimer. DeepComplex web server is freely available at http://tulip.rnet.missouri.edu/deepcomplex/web_index.html

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farhan Quadir ◽  
Raj S. Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

AbstractDeep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. We name this tool DNCON2_Inter. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of 22.9% for homodimers and 17.0% for higher-order homomultimers. In some instances, especially where interchain contact densities are high, DNCON2_Inter predicted interchain contacts with 100% precision. We also developed Con_Complex, a complex structure reconstruction tool that uses predicted contacts to produce the structure of the complex. Using Con_Complex, we show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2020 ◽  
Author(s):  
Farhan Quadir ◽  
Raj Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

AbstractDeep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of DNCON2: 22.9% for homodimers, and 17.0% for higher order homomultimers. In some instances, especially where interchain contact densities are high, the approach predicted interchain contacts with 100% precision. We show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2021 ◽  
Author(s):  
Farhan Quadir ◽  
Raj Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

Abstract Deep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. We name this tool DNCON2_Inter. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of 22.9% for homodimers, and 17.0% for higher order homomultimers. In some instances, especially where interchain contact densities are high, DNCON2_Inter predicted interchain contacts with 100% precision. We also developed Con_Complex, a complex structure reconstruction tool that uses predicted contacts to produce the structure of the complex. Using Con_Complex, we show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2021 ◽  
Author(s):  
Elham Soltanikazemi ◽  
Farhan Quadir ◽  
Raj Shekhor Roy ◽  
Jianlin Cheng

Predicting the quaternary structure of a protein complex is an important and challenging problem. Inter-chain residue-residue contact prediction can provide useful information to guide the ab initio reconstruction of quaternary structures of protein complexes. However, few methods have been developed to build quaternary structures from predicted inter-chain contacts. Here, we introduce a new gradient descent optimization algorithm (GD) to build quaternary structures of protein dimers utilizing inter-chain contacts as distance restraints. We evaluate GD on several datasets of homodimers and heterodimers using true or predicted contacts. GD consistently performs better than a simulated annealing method and a Markov Chain Monte Carlo simulation method. Using true inter-chain contacts as input, GD can reconstruct high-quality structural models for homodimers and heterodimers with average TM-score ranging from 0.92 to 0.99 and average interface root mean square distance (I-RMSD) from 0.72 Å to 1.64 Å. On a dataset of 115 homodimers, using predicted inter-chain contacts as input, the average TM-score of the structural models built by GD is 0.76. For 46% of the homodimers, high-quality structural models with TM-score >= 0.9 are reconstructed from predicted contacts. There is a strong correlation between the quality of the reconstructed models and the precision and recall of predicted contacts. If the precision or recall of predicted contacts is >20%, GD can reconstruct good models for most homodimers, indicating only a moderate precision or recall of inter-chain contact prediction is needed to build good structural models for most homodimers. Moreover, the accuracy of reconstructed models positively correlates with the contact density in dimers and depends on the initial model and the probability threshold of selecting predicted contacts for the distance-based structure optimization.


2020 ◽  
Author(s):  
Aashish Jain ◽  
Genki Terashi ◽  
Yuki Kagaya ◽  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Charles Christoffer ◽  
...  

ABSTRACTProtein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. The model is trained in a multi-task fashion to also predict backbone and orientation angles further improving the inter-residue distance prediction. We show that AttentiveDist outperforms the top methods for contact prediction in the CASP13 structure prediction competition. To aid in structure modeling we also developed two new deep learning-based sidechain center distance and peptide-bond nitrogen-oxygen distance prediction models. Together these led to a 12% increase in TM-score from the best server method in CASP13 for structure prediction.


Author(s):  
Ian R. Humphreys ◽  
Jimin Pei ◽  
Minkyung Baek ◽  
Aditya Krishnakumar ◽  
Ivan Anishchenko ◽  
...  

AbstractProtein-protein interactions play critical roles in biology, but despite decades of effort, the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions that have not yet been identified. Here, we take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes, as represented within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of S. cerevisiae proteins and build models for strongly predicted protein assemblies with two to five components. Comparison to existing interaction and structural data suggests that these predictions are likely to be quite accurate. We provide structure models spanning almost all key processes in Eukaryotic cells for 104 protein assemblies which have not been previously identified, and 608 which have not been structurally characterized.One-sentence summaryWe take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Haicang Zhang ◽  
Qi Zhang ◽  
Fusong Ju ◽  
Jianwei Zhu ◽  
Yujuan Gao ◽  
...  

Abstract Background Accurate prediction of inter-residue contacts of a protein is important to calculating its tertiary structure. Analysis of co-evolutionary events among residues has been proved effective in inferring inter-residue contacts. The Markov random field (MRF) technique, although being widely used for contact prediction, suffers from the following dilemma: the actual likelihood function of MRF is accurate but time-consuming to calculate; in contrast, approximations to the actual likelihood, say pseudo-likelihood, are efficient to calculate but inaccurate. Thus, how to achieve both accuracy and efficiency simultaneously remains a challenge. Results In this study, we present such an approach (called clmDCA) for contact prediction. Unlike plmDCA using pseudo-likelihood, i.e., the product of conditional probability of individual residues, our approach uses composite-likelihood, i.e., the product of conditional probability of all residue pairs. Composite likelihood has been theoretically proved as a better approximation to the actual likelihood function than pseudo-likelihood. Meanwhile, composite likelihood is still efficient to maximize, thus ensuring the efficiency of clmDCA. We present comprehensive experiments on popular benchmark datasets, including PSICOV dataset and CASP-11 dataset, to show that: i) clmDCA alone outperforms the existing MRF-based approaches in prediction accuracy. ii) When equipped with deep learning technique for refinement, the prediction accuracy of clmDCA was further significantly improved, suggesting the suitability of clmDCA for subsequent refinement procedure. We further present a successful application of the predicted contacts to accurately build tertiary structures for proteins in the PSICOV dataset. Conclusions Composite likelihood maximization algorithm can efficiently estimate the parameters of Markov Random Fields and can improve the prediction accuracy of protein inter-residue contacts.


Author(s):  
Tianqi Wu ◽  
Jie Hou ◽  
Badri Adhikari ◽  
Jianlin Cheng

Abstract Motivation Deep learning has become the dominant technology for protein contact prediction. However, the factors that affect the performance of deep learning in contact prediction have not been systematically investigated. Results We analyzed the results of our three deep learning-based contact prediction methods (MULTICOM-CLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 targets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact prediction than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage points. We also tested different alignment methods and domain-based contact prediction with the deep learning contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration of domain-based contact prediction with the full-length contact prediction improved the performance of contact prediction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to improve contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple distance intervals could capture more structural information and improve binary contact prediction. Availability and implementation https://github.com/multicom-toolbox/DNCON2/. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Ziwei Xie ◽  
Jinbo Xu

Motivation: Inter-protein (interfacial) contact prediction is very useful for in silico structural characterization of protein-protein interactions. Although deep learning has been applied to this problem, its accuracy is not as good as intra-protein contact prediction. Results: We propose a new deep learning method GLINTER (Graph Learning of INTER-protein contacts) for interfacial contact prediction of dimers, leveraging a rotational invariant representation of protein tertiary structures and a pretrained language model of multiple sequence alignments (MSAs). Tested on the 13th and 14th CASP-CAPRI datasets, the average top L/10 precision achieved by GLINTER is 54.35% on the homodimers and 51.56% on all the dimers, much higher than 30.43% obtained by the latest deep learning method DeepHomo on the homodimers and 14.69% obtained by BIPSPI on all the dimers. Our experiments show that GLINTER-predicted contacts help improve selection of docking decoys.


2021 ◽  
Author(s):  
Raj Shekhor Roy ◽  
Farhan Quadir ◽  
Elham Soltanikazemi ◽  
Jianlin Cheng

Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue-residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue-residue contacts in homodimers from residue-residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue-residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features. Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset, and CASP14-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.15%, and 24.81% respectively, which is substantially better than two existing deep learning interchain contact prediction methods. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs reasonably well, even though its accuracy is lower than when true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers.


Sign in / Sign up

Export Citation Format

Share Document