coevolution analysis
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Ian R. Humphreys ◽  
Jimin Pei ◽  
Minkyung Baek ◽  
Aditya Krishnakumar ◽  
Ivan Anishchenko ◽  
...  

AbstractProtein-protein interactions play critical roles in biology, but despite decades of effort, the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions that have not yet been identified. Here, we take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes, as represented within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of S. cerevisiae proteins and build models for strongly predicted protein assemblies with two to five components. Comparison to existing interaction and structural data suggests that these predictions are likely to be quite accurate. We provide structure models spanning almost all key processes in Eukaryotic cells for 104 protein assemblies which have not been previously identified, and 608 which have not been structurally characterized.One-sentence summaryWe take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Suresh Poudel ◽  
Alexander L. Cope ◽  
Kaela B. O’Dell ◽  
Adam M. Guss ◽  
Hyeongmin Seo ◽  
...  

Abstract Background Mass spectrometry-based proteomics can identify and quantify thousands of proteins from individual microbial species, but a significant percentage of these proteins are unannotated and hence classified as proteins of unknown function (PUFs). Due to the difficulty in extracting meaningful metabolic information, PUFs are often overlooked or discarded during data analysis, even though they might be critically important in functional activities, in particular for metabolic engineering research. Results We optimized and employed a pipeline integrating various “guilt-by-association” (GBA) metrics, including differential expression and co-expression analyses of high-throughput mass spectrometry proteome data and phylogenetic coevolution analysis, and sequence homology-based approaches to determine putative functions for PUFs in Clostridium thermocellum. Our various analyses provided putative functional information for over 95% of the PUFs detected by mass spectrometry in a wild-type and/or an engineered strain of C. thermocellum. In particular, we validated a predicted acyltransferase PUF (WP_003519433.1) with functional activity towards 2-phenylethyl alcohol, consistent with our GBA and sequence homology-based predictions. Conclusions This work demonstrates the value of leveraging sequence homology-based annotations with empirical evidence based on the concept of GBA to broadly predict putative functions for PUFs, opening avenues to further interrogation via targeted experiments.


2020 ◽  
Vol 15 (1) ◽  
pp. 346-363
Author(s):  
Lingyan Meng ◽  
Xiaomei Liu ◽  
Congfen He ◽  
Biyao Xu ◽  
Yaxuan Li ◽  
...  

AbstractKNOTTED-like homeodomain (KNOX) genes are transcriptional regulators that play an important role in morphogenesis. In the present study, a comparative analysis was performed to investigate the molecular evolution of the characteristics of the KNOX gene family in 10 different plant species. We identified 129 KNOX gene family members, which were categorized into two subfamilies based on multiple sequence alignment and phylogenetic tree reconstruction. Several segmental duplication pairs were found, indicating that different species share a common expansion model. Functional divergence analysis identified the 15 and 52 amino acid sites with significant changes in evolutionary rates and amino acid physicochemical properties as functional divergence sites. Additional selection analysis showed that 14 amino acid sites underwent positive selection during evolution, and two groups of co-evolutionary amino acid sites were identified by Coevolution Analysis using Protein Sequences software. These sites could play critical roles in the molecular evolution of the KNOX gene family in these species. In addition, the expression profiles of KNOX duplicated genes demonstrated functional divergence. Taken together, these results provide novel insights into the structural and functional evolution of the KNOX gene family.


2020 ◽  
Vol 48 (W1) ◽  
pp. W558-W565
Author(s):  
Elin Teppa ◽  
Diego J Zea ◽  
Francesco Oteri ◽  
Alessandra Carbone

Abstract Overlapping genes are commonplace in viruses and play an important role in their function and evolution. For these genes, molecular coevolution may be seen as a mechanism to decrease the evolutionary constraints of amino acid positions in the overlapping regions and to tolerate or compensate unfavorable mutations. Tracing these mutational sites, could help to gain insight on the direct or indirect effect of the mutations in the corresponding overlapping proteins. In the past, coevolution analysis has been used to identify residue pairs and coevolutionary signatures within or between proteins that served as markers of physical interactions and/or functional relationships. Coevolution in OVerlapped sequences by Tree analysis (COVTree) is a web server providing the online analysis of coevolving amino-acid pairs in overlapping genes, where residues might be located inside or outside the overlapping region. COVTree is designed to handle protein families with various characteristics, among which those that typically display a small number of highly conserved sequences. It is based on BIS2, a fast version of the coevolution analysis tool Blocks in Sequences (BIS). COVTree provides a rich and interactive graphical interface to ease biological interpretation of the results and it is openly accessible at http://www.lcqb.upmc.fr/COVTree/.


2020 ◽  
Vol 118 (3) ◽  
pp. 360a
Author(s):  
José Fiorote
Keyword(s):  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Elin Teppa ◽  
Francesca Nadalin ◽  
Christophe Combet ◽  
Diego Javier Zea ◽  
Laurent David ◽  
...  

Abstract The study of mutational landscapes of viral proteins is fundamental for the understanding of the mechanisms of cross-resistance to drugs and the design of effective therapeutic strategies based on several drugs. Antiviral therapy with nucleos(t)ide analogues targeting the hepatitis B virus (HBV) polymerase protein (Pol) can inhibit disease progression by suppression of HBV replication and makes it an important case study. In HBV, treatment may fail due to the emergence of drug-resistant mutants. Primary and compensatory mutations have been associated with lamivudine resistance, whereas more complex mutational patterns are responsible for resistance to other HBV antiviral drugs. So far, all known drug-resistance mutations are located in one of the four Pol domains, called reverse transcriptase. We demonstrate that sequence covariation identifies drug-resistance mutations in viral sequences. A new algorithmic strategy, BIS2TreeAnalyzer, is designed to apply the coevolution analysis method BIS2, successfully used in the past on small sets of conserved sequences, to large sets of evolutionary related sequences. When applied to HBV, BIS2TreeAnalyzer highlights diversified viral solutions by discovering thirty-seven positions coevolving with residues known to be associated with drug resistance and located on the four Pol domains. These results suggest a sequential mechanism of emergence for some mutational patterns. They reveal complex combinations of positions involved in HBV drug resistance and contribute with new information to the landscape of HBV evolutionary solutions. The computational approach is general and can be applied to other viral sequences when compensatory mutations are presumed.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Nabil Abid ◽  
Giovanni Chillemi ◽  
Marco Salemi

Rotavirus remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious question. The distribution of unusual genotypes subject to viral fitness is influenced by interactions among viral proteins. The present work aimed at analyzing the genetic constellation and the coevolution of rotavirus coding genes for the available rotavirus genotypes. Seventy-two full genome sequences of different genetic constellations were analyzed using a genetic algorithm. The results revealed an extensive genome-wide covariance network among the 12 viral proteins. Altogether, the emergence of new genotypes represents a challenge to the outcome and success of vaccination and the coevolutionary analysis of rotavirus proteins may boost efforts to better understand the interaction networks of proteins during viral replication/transcription.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew McCallum ◽  
Samir Benlekbir ◽  
Sheryl Nguyen ◽  
Stephanie Tammam ◽  
John L. Rubinstein ◽  
...  

AbstractType IV pilus-like systems are protein complexes that polymerize pilin fibres. They are critical for virulence in many bacterial pathogens. Pilin polymerization and depolymerization are powered by motor ATPases of the PilT/VirB11-like family. This family is thought to operate with C2 symmetry; however, most of these ATPases crystallize with either C3 or C6 symmetric conformations. The relevance of these conformations is unclear. Here, we determine the X-ray structures of PilT in four unique conformations and use these structures to classify the conformation of available PilT/VirB11-like family member structures. Single particle electron cryomicroscopy (cryoEM) structures of PilT reveal condition-dependent preferences for C2,C3, and C6 conformations. The physiologic importance of these conformations is validated by coevolution analysis and functional studies of point mutants, identifying a rare gain-of-function mutation that favours the C2 conformation. With these data, we propose a comprehensive model of PilT function with broad implications for PilT/VirB11-like family members.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 869 ◽  
Author(s):  
Yufei Zhai ◽  
Xiaqing Yu ◽  
Zaobing Zhu ◽  
Panqiao Wang ◽  
Ya Meng ◽  
...  

Allopolyploids are often faced with the challenge of maintaining well-coordination between nuclear and cytoplasmic genes inherited from different species. The synthetic allotetraploid Cucumis × hytivus is a useful model to explore cytonuclear coevolution. In this study, the sequences and expression of cytonuclear enzyme complex RuBisCO as well as its content and activity in C. × hytivus were compared to its parents to explore plastid–nuclear coevolution. The plastome-coded rbcL gene sequence was confirmed to be stable maternal inheritance, and parental copy of nuclear rbcS genes were both preserved in C. × hytivus. Thus, the maternal plastid may interact with the biparentally inherited rbcS alleles. The expression of the rbcS gene of C-homoeologs (paternal) was significantly higher than that of H-homoeologs (maternal) in C. × hytivus (HHCC). Protein interaction prediction analysis showed that the rbcL protein has stronger binding affinity to the paternal copy of rbcS protein than that of maternal copy in C. × hytivus, which might explain the transcriptional bias of the rbcS homoeologs. Moreover, both the activity and content of RuBisCO in C. × hytivus showed mid-parent heterosis. In summary, our results indicate a paternal transcriptional bias of the rbcS genes in C. × hytivus, and we found new nuclear–cytoplasmic combination may be one of the reasons for allopolyploids heterosis.


Sign in / Sign up

Export Citation Format

Share Document