scholarly journals Structures of core eukaryotic protein complexes

Author(s):  
Ian R. Humphreys ◽  
Jimin Pei ◽  
Minkyung Baek ◽  
Aditya Krishnakumar ◽  
Ivan Anishchenko ◽  
...  

AbstractProtein-protein interactions play critical roles in biology, but despite decades of effort, the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions that have not yet been identified. Here, we take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes, as represented within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of S. cerevisiae proteins and build models for strongly predicted protein assemblies with two to five components. Comparison to existing interaction and structural data suggests that these predictions are likely to be quite accurate. We provide structure models spanning almost all key processes in Eukaryotic cells for 104 protein assemblies which have not been previously identified, and 608 which have not been structurally characterized.One-sentence summaryWe take advantage of recent advances in proteome-wide amino acid coevolution analysis and deep-learning-based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farhan Quadir ◽  
Raj S. Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

AbstractDeep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. We name this tool DNCON2_Inter. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of 22.9% for homodimers and 17.0% for higher-order homomultimers. In some instances, especially where interchain contact densities are high, DNCON2_Inter predicted interchain contacts with 100% precision. We also developed Con_Complex, a complex structure reconstruction tool that uses predicted contacts to produce the structure of the complex. Using Con_Complex, we show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2020 ◽  
Author(s):  
Farhan Quadir ◽  
Raj Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

AbstractDeep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of DNCON2: 22.9% for homodimers, and 17.0% for higher order homomultimers. In some instances, especially where interchain contact densities are high, the approach predicted interchain contacts with 100% precision. We show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2021 ◽  
Author(s):  
Farhan Quadir ◽  
Raj Roy ◽  
Randal Halfmann ◽  
Jianlin Cheng

Abstract Deep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. We name this tool DNCON2_Inter. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of 22.9% for homodimers, and 17.0% for higher order homomultimers. In some instances, especially where interchain contact densities are high, DNCON2_Inter predicted interchain contacts with 100% precision. We also developed Con_Complex, a complex structure reconstruction tool that uses predicted contacts to produce the structure of the complex. Using Con_Complex, we show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins.


2016 ◽  
Vol 113 (52) ◽  
pp. 15018-15023 ◽  
Author(s):  
Juan Rodriguez-Rivas ◽  
Simone Marsili ◽  
David Juan ◽  
Alfonso Valencia

Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.


2019 ◽  
Author(s):  
Anton Suvorov ◽  
Joshua Hochuli ◽  
Daniel R. Schrider

AbstractReconstructing the phylogenetic relationships between species is one of the most formidable tasks in evolutionary biology. Multiple methods exist to reconstruct phylogenetic trees, each with their own strengths and weaknesses. Both simulation and empirical studies have identified several “zones” of parameter space where accuracy of some methods can plummet, even for four-taxon trees. Further, some methods can have undesirable statistical properties such as statistical inconsistency and/or the tendency to be positively misleading (i.e. assert strong support for the incorrect tree topology). Recently, deep learning techniques have made inroads on a number of both new and longstanding problems in biological research. Here we designed a deep convolutional neural network (CNN) to infer quartet topologies from multiple sequence alignments. This CNN can readily be trained to make inferences using both gapped and ungapped data. We show that our approach is highly accurate, often outperforming traditional methods, and is remarkably robust to bias-inducing regions of parameter space such as the Felsenstein zone and the Farris zone. We also demonstrate that the confidence scores produced by our CNN can more accurately assess support for the chosen topology than bootstrap and posterior probability scores from traditional methods. While numerous practical challenges remain, these findings suggest that deep learning approaches such as ours have the potential to produce more accurate phylogenetic inferences.


2015 ◽  
Author(s):  
Xiaolong Wang ◽  
Chao Yang

Multiple sequence alignment (MSA) is widely used to reveal structural and functional changes leading to genetic differences among species, and to reconstruct evolutionary histories of related genes, proteins and genomes. Traditionally, proteins and their coding sequences (CDSs) are aligned and analyzed separately, but often drastically different conclusions were drawn on a same set of data. Here we present a new alignment strategy, Codon and Amino Acid Unified Sequence Alignment (CAUSA) 2.0, which aligns proteins and their coding sequences simultaneously. CAUSA 2.0 optimizes the alignment of CDSs at both codon and amino acid level efficiently. Theoretical analysis showed that CAUSA 2.0 enhances the entropy information content of MSA. Empirical data analysis demonstrated that CAUSA 2.0 is more accurate and consistent than nucleotide, protein or codon level alignments. CAUSA 2.0 locates in-frame indels more accurately, makes the alignment of coding sequences biologically more significant, and reveals several novel mutation mechanisms that relate to some genetic diseases. CAUSA 2.0 is available in website www.DNAPlusPro.com .


2020 ◽  
Author(s):  
Aashish Jain ◽  
Genki Terashi ◽  
Yuki Kagaya ◽  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Charles Christoffer ◽  
...  

ABSTRACTProtein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. The model is trained in a multi-task fashion to also predict backbone and orientation angles further improving the inter-residue distance prediction. We show that AttentiveDist outperforms the top methods for contact prediction in the CASP13 structure prediction competition. To aid in structure modeling we also developed two new deep learning-based sidechain center distance and peptide-bond nitrogen-oxygen distance prediction models. Together these led to a 12% increase in TM-score from the best server method in CASP13 for structure prediction.


2021 ◽  
Author(s):  
Nikhil Kasukurthi ◽  
Shruthi Viswanath

Motivation: Integrative modeling of macromolecular structures usually results in an ensemble of models that satisfy the input information. The model precision, or variability among these models is estimated globally, i.e., a single precision value is reported for the model. However, it would be useful to identify regions of high and low precision. For instance, low-precision regions can suggest where the next experiments could be performed and high-precision regions can be used for further analysis, e.g., suggesting mutations. Results: We develop PrISM (Precision for Integrative Structural Models), using autoencoders to efficiently and accurately annotate precision for integrative models. The method is benchmarked and tested on five examples of binary protein complexes and five examples of large protein assemblies. The annotated precision is shown to be consistent with, and more informative than localization densities. The generated networks are also interpreted by gradient-based attention analysis. Availability: Source code is at https://github.com/isblab/prism.


Author(s):  
Tianqi Wu ◽  
Jie Hou ◽  
Badri Adhikari ◽  
Jianlin Cheng

Abstract Motivation Deep learning has become the dominant technology for protein contact prediction. However, the factors that affect the performance of deep learning in contact prediction have not been systematically investigated. Results We analyzed the results of our three deep learning-based contact prediction methods (MULTICOM-CLUSTER, MULTICOM-CONSTRUCT and MULTICOM-NOVEL) in the CASP13 experiment and identified several key factors [i.e. deep learning technique, multiple sequence alignment (MSA), distance distribution prediction and domain-based contact integration] that influenced the contact prediction accuracy. We compared our convolutional neural network (CNN)-based contact prediction methods with three coevolution-based methods on 75 CASP13 targets consisting of 108 domains. We demonstrated that the CNN-based multi-distance approach was able to leverage global coevolutionary coupling patterns comprised of multiple correlated contacts for more accurate contact prediction than the local coevolution-based methods, leading to a substantial increase of precision by 19.2 percentage points. We also tested different alignment methods and domain-based contact prediction with the deep learning contact predictors. The comparison of the three methods showed deeper sequence alignments and the integration of domain-based contact prediction with the full-length contact prediction improved the performance of contact prediction. Moreover, we demonstrated that the domain-based contact prediction based on a novel ab initio approach of parsing domains from MSAs alone without using known protein structures was a simple, fast approach to improve contact prediction. Finally, we showed that predicting the distribution of inter-residue distances in multiple distance intervals could capture more structural information and improve binary contact prediction. Availability and implementation https://github.com/multicom-toolbox/DNCON2/. Supplementary information Supplementary data are available at Bioinformatics online.


2010 ◽  
Vol 08 (05) ◽  
pp. 809-823 ◽  
Author(s):  
FREDRIK JOHANSSON ◽  
HIROYUKI TOH

The Shannon entropy is a common way of measuring conservation of sites in multiple sequence alignments, and has also been extended with the relative Shannon entropy to account for background frequencies. The von Neumann entropy is another extension of the Shannon entropy, adapted from quantum mechanics in order to account for amino acid similarities. However, there is yet no relative von Neumann entropy defined for sequence analysis. We introduce a new definition of the von Neumann entropy for use in sequence analysis, which we found to perform better than the previous definition. We also introduce the relative von Neumann entropy and a way of parametrizing this in order to obtain the Shannon entropy, the relative Shannon entropy and the von Neumann entropy at special parameter values. We performed an exhaustive search of this parameter space and found better predictions of catalytic sites compared to any of the previously used entropies.


Sign in / Sign up

Export Citation Format

Share Document