scholarly journals Age-related variations of visuo-motor adaptation beyond explicit knowledge

Author(s):  
Herbert Heuer ◽  
Mathias Hegele
Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.


2014 ◽  
Vol 111 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Helen J. Huang ◽  
Alaa A. Ahmed

The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older ( n = 11, 73.8 ± 5.6 yr) and young ( n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation.


2020 ◽  
Vol 90 ◽  
pp. 13-23 ◽  
Author(s):  
Noham Wolpe ◽  
James N. Ingram ◽  
Kamen A. Tsvetanov ◽  
Richard N. Henson ◽  
Daniel M. Wolpert ◽  
...  

2018 ◽  
Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

AbstractA wide range of motor function declines with aging. Motor adaptation, which occurs when participants learn to reach accurately to a target despite a perturbation, does not deviate from this rule. There are currently three major hypotheses that have been put forward to explain this age-related decline in adaptation: deterioration of internal model recalibration due to age-related cerebellar degeneration, impairment of the cognitive component of motor adaptation, and deficit in the retention of the learned movement. In the present study, we systematically investigated these three hypotheses in a large sample of older women and men. We demonstrate that age-related deficits in motor adaptation are not due to impaired internal model recalibration or impaired retention of motor memory. Rather, we found that the cognitive component was reduced in older people. Therefore, our study suggests the interesting possibility that cerebellar-based mechanisms do not deteriorate with age despite cerebellar degeneration. In contrast, internal model recalibration appears to compensate for deficits in the cognitive component of this type of learning.


2020 ◽  
Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

AbstractThe ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, automatic adjustment of movement, or internal model recalibration, remains intact and might even be increased with aging. Since somatosensory information appears to be required for internal model recalibration, it might well be that an age-related decline in somatosensory acuity is linked to the increase of internal model recalibration. One possible explanation for an increased internal model recalibration is that age-related somatosensory deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced somatosensory acuity results in an increased reliance on predicted sensory feedback. Both these explanations led to our preregistered hypothesis: we expect a relation between the decline of somatosensation and the increased internal model recalibration with aging. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and somatosensory signals during motor adaptation.New & NoteworthyIs somatosensory acuity linked to implicit motor adaptation? The latter is larger in old compared to younger people? In light of reliability-based sensory integration, we hypothesized that this larger implicit adaptation was linked to an age-related lower reliability of somatosensation. Over two experiments and 130 participants, we failed to find any evidence for this. We discuss alternative explanations for the increase in implicit adaptation with age and the validity of our somatosensory assessment.


2018 ◽  
Author(s):  
Pablo A. Iturralde ◽  
Gelsy Torres-Oviedo

AbstractRecent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (a.k.a., reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked if corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon introduction or removal of an unexpected speed transition to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short vs. long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.Significance statementWe showed that corrective muscle activity elicited by sudden environmental transitions is revealing of the underlying recalibration process during sensorimotor adaptation. This allowed us to identify age-related decline in motor learning that was not discernible from kinematic measures conventionally used in motor adaptation studies. These findings suggest that older populations may have limited potential to correct their movements through error-based protocols simply given their age. Moreover, we describe the distinct motor patterns recruited during and after the split condition, informing our understanding of the therapeutic effect of this task. Therefore, our detailed EMG characterization provides valuable normative data of muscle activity that could be reinforced with repeated exposure of split-belts walking.


2001 ◽  
Vol 24 (1) ◽  
pp. 48-49 ◽  
Author(s):  
Stuart Marcovitch ◽  
Philip David Zelazo

The dynamic systems approach simulates a wide range of effects and generates novel predictions, but it fails to explain age-related behavioral changes in psychological terms. We argue that the roles of conscious control and explicit knowledge must be addressed in any model of A-not-B performance, and a fortiori, in any model of goal-directed action.


2019 ◽  
Author(s):  
Jana Maresch ◽  
Susen Werner ◽  
Opher Donchin

AbstractVisuomotor rotations are frequently used to study the different processes underlying motor adaptation. Explicit aiming strategies and implicit recalibration are two of these processes. Various methods, which differ in their underlying assumptions, have been used to dissociate the two processes. Direct methods, such as verbal reports, assume explicit knowledge to be verbalizable, where indirect methods, such as the exclusion, assume that explicit knowledge is controllable. The goal of this study was thus to directly compare verbal reporting with exclusion in two different conditions: during consistent reporting and during intermittent reporting. Our results show that our two conditions lead to a dissociation between the measures. In the consistent reporting group, all measures showed similar results. However, in the intermittent reporting group, verbal reporting showed more explicit re-aiming and less implicit adaptation than exclusion. Curiously, when exclusion was measured again, after the end of learning, the differences were no longer apparent. We suspect this may reflect selective decay in implicit adaptation, as has been reported previously. All told, our results clearly indicate that methods of measurement can affect the amount of explicit re-aiming and implicit adaptation that is measured. Since it has been previously shown that both explicit re-aiming and implicit adaptation have multiple components, discrepancies between these different methods may arise because different measures reflect different components.


Sign in / Sign up

Export Citation Format

Share Document