scholarly journals Brain activation during visual working memory correlates with behavioral mobility performance in older adults

Author(s):  
Toshikazu Kawagoe ◽  
Maki Suzuki ◽  
Shu Nishiguchi ◽  
Nobuhito Abe ◽  
Yuki Otsuka ◽  
...  
2021 ◽  
Vol 21 (9) ◽  
pp. 2592
Author(s):  
Giorgia D'Innocenzo ◽  
Anastasiia Mikhailova ◽  
Moreno I. Coco

2010 ◽  
Vol 22 (4) ◽  
pp. 655-669 ◽  
Author(s):  
Nils J. Schneider-Garces ◽  
Brian A. Gordon ◽  
Carrie R. Brumback-Peltz ◽  
Eunsam Shin ◽  
Yukyung Lee ◽  
...  

Neuroimaging data emphasize that older adults often show greater extent of brain activation than younger adults for similar objective levels of difficulty. A possible interpretation of this finding is that older adults need to recruit neuronal resources at lower loads than younger adults, leaving no resources for higher loads, and thus leading to performance decrements [Compensation-Related Utilization of Neural Circuits Hypothesis; e.g., Reuter-Lorenz, P. A., & Cappell, K. A. Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182, 2008]. The Compensation-Related Utilization of Neural Circuits Hypothesis leads to the prediction that activation differences between younger and older adults should disappear when task difficulty is made subjectively comparable. In a Sternberg memory search task, this can be achieved by assessing brain activity as a function of load relative to the individual's memory span, which declines with age. Specifically, we hypothesized a nonlinear relationship between load and both performance and brain activity and predicted that asymptotes in the brain activation function should correlate with performance asymptotes (corresponding to working memory span). The results suggest that age differences in brain activation can be largely attributed to individual variations in working memory span. Interestingly, the brain activation data show a sigmoid relationship with load. Results are discussed in terms of Cowan's [Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114, 2001] model of working memory and theories of impaired inhibitory processes in aging.


2018 ◽  
Author(s):  
Gaby Pfeifer ◽  
Jamie Ward ◽  
Natasha Sigala

AbstractThe sensory recruitment model envisages visual working memory (VWM) as an emergent property that is encoded and maintained in sensory (visual) regions. The model implies that enhanced sensory-perceptual functions, as in synaesthesia, entail a dedicated VWM-system, showing reduced visual cortex activity as a result of neural specificity. By contrast, sensory-perceptual decline, as in old age, is expected to show enhanced visual cortex activity as a result of neural broadening. To test this model, young grapheme-colour synaesthetes, older adults and young controls engaged in a delayed pair-associative retrieval and a delayed matching-to-sample task, consisting of achromatic fractal stimuli that do not induce synaesthesia. While a previous analysis of this dataset (Pfeifer et al., 2016) has focused on cued retrieval and recognition of pair-associates (i.e. long-term memory), the current study focuses on visual working memory and considers, for the first time, the crucial delay period in which no visual stimuli are present, but working memory processes are engaged. Participants were trained to criterion and demonstrated comparable behavioural performance on VWM tasks. Whole-brain and region-of-interest-analyses revealed significantly lower activity in synaesthetes’ middle frontal gyrus and visual regions (cuneus, inferior temporal cortex) respectively, suggesting greater neural efficiency relative to young and older adults in both tasks. The results support the sensory recruitment model and can explain age and individual WM-differences based on neural specificity in visual cortex.


2020 ◽  
Vol 10 (8) ◽  
pp. 556
Author(s):  
Mariana R. Maniglia ◽  
Alessandra S. Souza

Healthy aging is associated with decline in the ability to maintain visual information in working memory (WM). We examined whether this decline can be explained by decreases in the ability to filter distraction during encoding or to ignore distraction during memory maintenance. Distraction consisted of irrelevant objects (Exp. 1) or irrelevant features of an object (Exp. 2). In Experiment 1, participants completed a spatial WM task requiring remembering locations on a grid. During encoding or during maintenance, irrelevant distractor positions were presented. In Experiment 2, participants encoded either single-feature (colors or orientations) or multifeature objects (colored triangles) and later reproduced one of these features using a continuous scale. In multifeature blocks, a precue appeared before encoding or a retrocue appeared during memory maintenance indicating with 100% certainty to the to-be-tested feature, thereby enabling filtering and ignoring of the irrelevant (not-cued) feature, respectively. There were no age-related deficits in the efficiency of filtering and ignoring distractor objects (Exp. 1) and of filtering irrelevant features (Exp. 2). Both younger and older adults could not ignore irrelevant features when cued with a retrocue. Overall, our results provide no evidence for an aging deficit in using attention to manage visual WM.


Author(s):  
Hector Arciniega ◽  
Filiz Gözenman ◽  
Kevin T. Jones ◽  
Jaclyn A. Stephens ◽  
Marian E. Berryhill

2021 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Nigel Rogasch ◽  
John Semmler ◽  
Mitchell Goldsworthy

Both selective attention and visual working memory (WM) performance are vulnerable to age related decline. Older adults perform worse on, and are less able to modulate oscillatory power in the alpha frequency range (8-12 Hz) than younger adults in WM tasks involving predictive cues about ‘where’ or ‘when’ a stimulus will be present. However, no study has investigated whether alpha power is modulated by cues predicting ‘how long’ an encoding duration will be. To test this, we recorded electroencephalography (EEG) while 24 younger (aged 18-33 years) and 23 older (aged 60-77 years) adults completed a modified delay match-to-sample task where participants were cued to the duration (either 0.1 s or 0.5 s) of an encoding stimulus consisting of 4 coloured squares. We found: (1) predictive cues increased WM capacity, but long encoding duration trials led to reduced WM capacity in both age groups, compared to short encoding duration trials; (2) no evidence for differences in preparatory alpha power between predictive and neutral cues for either short or long encoding durations, but preparatory alpha suppression was weaker in older adults; (3) retention period oscillatory power differed between short and long encoding duration trials, but these differences were no longer present when comparing the trial types from the onset of the encoding stimulus; and (4) oscillatory power in the preparatory and retention periods were not related to task performance. Our results suggest that preparatory alpha power is not modulated by predictive cues towards encoding duration during visual WM, however, reductions in alpha/beta oscillatory power during visual WM retention may be linked to the encoding stimulus, rather than a process specific to WM retention.


Sign in / Sign up

Export Citation Format

Share Document