lewy neurites
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Berkiye Sonustun ◽  
Firat M Altay ◽  
Catherine Strand ◽  
Geshanthi Hondhamuni ◽  
Thomas T Warner ◽  
...  

Aggregated alpha-synuclein (-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of -synuclein exist, including phosphorylated and nitrated forms. It is unclear which -synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant synuclein PTMs in post-mortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three -synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-affected regions of 15 PD, 5 MSA, 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 -synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures followed by nY39 -synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 -synuclein in MSA. Quantification of the LB scores revealed that pS129 -synuclein was the dominant and earliest -synuclein PTM followed by nY39 -synuclein, while lower amounts of pSer87 -synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments.


2022 ◽  
Author(s):  
Berkiye Sonustun ◽  
Firat M Altay ◽  
Catherine Strand ◽  
Geshanthi Hondhamuni ◽  
Thomas T Warner ◽  
...  

Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson′s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of α-synuclein exist, including phosphorylated and nitrated forms. It is unclear which α-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant α-synuclein PTMs in post-mortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three α-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-affected regions of 15 PD, 5 MSA, 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 α-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures followed by nY39 -synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 α-synuclein in MSA. Quantification of the LB scores revealed that pS129 α-synuclein was the dominant and earliest α-synuclein PTM followed by nY39 α-synuclein, while lower amounts of pSer87 α-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Changyoun Kim ◽  
Armine Hovakimyan ◽  
Karen Zagorski ◽  
Tatevik Antonyan ◽  
Irina Petrushina ◽  
...  

AbstractAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85–99 (PV-1947D), aa109–126 (PV-1948D), aa126–140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.


Author(s):  
Eftychia Vasili ◽  
Antonio Dominguez-Meijide ◽  
Manuel Flores-León ◽  
Mohammed Al-Azzani ◽  
Angeliki Kanellidi ◽  
...  

AbstractParkinson’s disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. Alpha-synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying the seeding of alpha-synuclein aggregation are still unclear. Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein preformed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein levels on seeding and aggregation. Our results indicate that the levels of alpha-synuclein define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson’s disease and other synucleinopathies.


2021 ◽  
Author(s):  
Eftychia Vasili ◽  
Antonio Dominguez-Meijide ◽  
Manuel Flores-Léon ◽  
Mohammed Al-Azzani ◽  
Angeliki Kanellidi ◽  
...  

Abstract Background: Parkinson's disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded alpha-synuclein in intraneuronal inclusions known as Lewy bodies and Lewy neurites. Multiple studies strongly implicate the levels of alpha-synuclein as a major risk factor for the onset and progression of Parkinson’s disease. Alpha-synuclein pathology spreads progressively throughout interconnected brain regions but the precise molecular mechanisms underlying the seeding of alpha-synuclein aggregation are still unclear.Methods: Here, using stable cell lines expressing alpha-synuclein, we examined the correlation between endogenous alpha-synuclein levels and the seeding propensity by exogenous alpha-synuclein pre-formed fibrils. We applied biochemical approaches and imaging methods in stable cell lines expressing alpha-synuclein and in primary neurons to determine the impact of alpha-synuclein levels on seeding and aggregation. Results: Our results indicate that the levels of alpha-synuclein define the pattern and severity of aggregation and the extent of p-alpha-synuclein deposition, likely explaining the selective vulnerability of different cell types in synucleinopathies. Conclusions: The elucidation of the cellular processes involved in the pathological aggregation of alpha-synuclein will enable the identification of novel targets and the development of therapeutic strategies for Parkinson's disease and other synucleinopathies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunsuke Koga ◽  
Hiroaki Sekiya ◽  
Naveen Kondru ◽  
Owen A. Ross ◽  
Dennis W. Dickson

AbstractSynucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson’s disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct “strains” having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.


2021 ◽  
Author(s):  
Yun Fan ◽  
Yunpeng Sun ◽  
Wenbo Yu ◽  
Youqi Tao ◽  
Wencheng Xia ◽  
...  

alpha-Synuclein (alpha-syn) fibrillar aggregates are the major component of Lewy bodies and Lewy neurites presenting as the pathology hallmark of Parkinson's disease (PD). Studies have shown that alpha-syn is potential to form different conformational fibrils associated with different synucleinopathies, but whether the conformation of alpha-syn fibrils changes in different phases of related diseases is to be explored. Here, we amplified alpha-syn aggregates from the cerebrospinal fluid (CSF) of preclinical (pre-PD) and late-stage postmortem PD (post-PD) patients. Our results show that compared to the CSF of pre-PD, that of post-PD is markedly stronger in seeding in vitro alpha-syn aggregation, and the amplified fibrils are more potent in inducing endogenous alpha-syn aggregation in neurons. Cryo-electron microscopic structures further reveal that the difference between the pre-PD- and post-PD-derived fibrils lies on a minor polymorph which in the pre-PD fibrils is morphologically straight, while in the post-PD fibrils represents a single protofilament assembled by a distinctive conformation of alpha-syn. Our work demonstrates structural and pathological differences between pre-PD and post-PD alpha-syn aggregation and suggests potential alteration of alpha-syn fibrils during the progression of PD clinical phases.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1508
Author(s):  
Anna Picca ◽  
Flora Guerra ◽  
Riccardo Calvani ◽  
Roberta Romano ◽  
Hélio José Coelho-Júnior ◽  
...  

Parkinson’s Disease (PD) is a highly prevalent neurodegenerative disease among older adults. PD neuropathology is marked by the progressive loss of the dopaminergic neurons of the substantia nigra pars compacta and the widespread accumulation of misfolded intracellular α-synuclein (α-syn). Genetic mutations and post-translational modifications, such as α-syn phosphorylation, have been identified among the multiple factors supporting α-syn accrual during PD. A decline in the clearance capacity of the ubiquitin-proteasome and the autophagy-lysosomal systems, together with mitochondrial dysfunction, have been indicated as major pathophysiological mechanisms of PD neurodegeneration. The accrual of misfolded α-syn aggregates into soluble oligomers, and the generation of insoluble fibrils composing the core of intraneuronal Lewy bodies and Lewy neurites observed during PD neurodegeneration, are ignited by the overproduction of reactive oxygen species (ROS). The ROS activate the α-syn aggregation cascade and, together with the Lewy bodies, promote neurodegeneration. However, the molecular pathways underlying the dynamic evolution of PD remain undeciphered. These gaps in knowledge, together with the clinical heterogeneity of PD, have hampered the identification of the biomarkers that may be used to assist in diagnosis, treatment monitoring, and prognostication. Herein, we illustrate the main pathways involved in PD pathogenesis and discuss their possible exploitation for biomarker discovery.


2021 ◽  
Author(s):  
Shunsuke Koga ◽  
Hiroaki Sekiya ◽  
Naveen Kondru ◽  
Owen Ross ◽  
Dennis Dickson

Abstract Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions (GCIs). Synucleinopathies can be divided into two major disease entities: Lewy body disease (LBD) and multiple system atrophy (MSA). Common clinical presentations of LBD are Parkinson's disease (PD), PD with dementia (PDD), and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia (MSA-C) and MSA with predominant parkinsonism (MSA-P). There are currently no disease-modifying therapies for the synucleinopathies, but elucidation of genetics and mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and GCI) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from LBD and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissues. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a review of classification and staging schemes for LBD. We also review evidence supporting the existence of distinct α-synuclein strains in LBD and MSA.


2021 ◽  
Vol 22 (17) ◽  
pp. 9375
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Parkinson’s disease (PD) is characterized by a loss of dopaminergic cells in the substantia nigra, and its histopathological features include the presence of fibrillar aggregates of α-synuclein (α-syn), which are called Lewy bodies and Lewy neurites. Lewy pathology has been identified not only in the brain but also in various tissues, including muscles. This study aimed to investigate the link between serine/arginine-rich protein specific kinase 3 (srpk3) and α-syn in muscles in PD. We conducted experiments on the quadriceps femoris of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the C2C12 cell line after treatment with 1-methyl-4-phenylpyridinium (MPP+) and srpk3 short interfering RNA (siRNA). Compared to the control group, the MPTP group showed significantly reduced expression of srpk3, but increased expression of α-syn. In MPP+-treated C2C12 cells, srpk3 expression gradually decreased and α-syn expression increased with the increasing MPP+ concentration. Moreover, experiments in C2C12 cells using srpk3 siRNA showed increased expressions of α-syn and phosphorylated α-syn. Our results showed that srpk3 expression could be altered by MPTP intoxication in muscles, and this change may be related to changes in α-syn expression. Furthermore, this study could contribute to advancement of research on the mechanism by which srpk3 plays a role in PD.


Sign in / Sign up

Export Citation Format

Share Document