scholarly journals Comprehensive Evaluation of White Matter Damage and Neuron Death and Whole-Transcriptome Analysis of Rats With Chronic Cerebral Hypoperfusion

Author(s):  
Wenxian Li ◽  
Di Wei ◽  
Jianye Liang ◽  
Xiaomei Xie ◽  
Kangping Song ◽  
...  

Background/AimsChronic cerebral hypoperfusion (CCH) is induced by chronic deficit of brain perfusion, contributes to a persistent or progressive cognitive dysfunction, which is characterized by diverse neuropathological manifestations. There are currently no effective medications available. White matter damage (WMD) and cortical neuron death may be caused by CCH, which are related to cognitive impairment, while the underlying molecular mechanisms remain unclear. In the study, a database of the transcriptome level was built to determine potential biomarkers in cortex of CCH.MethodsCCH was induced in male Sprague-Dawley rats by permanent occlusion of the bilateral common carotid arteries. Rats were randomly divided into three groups: Sham-operated group (n = 24), the 4th and 8th week of CCH groups (total = 56, n = 28 for each group). Cognitive function was evaluated using the Morris water maze task. WMD and neuron damage were detected using diffusion tensor imaging and histological analysis, respectively. Western blotting analysis of various markers was used to examine neuronal death. Whole-transcriptome microarray was performed to assess mRNA, circRNA, and lncRNA expression profiles at 4th and 8th weeks after CCH. Diversified bioinformatic tools were performed to analyze and predict the key biological processes and signaling pathways of differentially expressed RNAs and co-expressed potential target genes. Co-expression networks of mRNA–circRNA–miRNA and lncRNA–mRNA were constructed.ResultsCompared to the sham group, cognitive impairment, disintegration of white matter, blood-brain barrier damage and neuron death were induced by CCH. Neuron death including apoptosis and necroptosis might occur in the cortex of CCH. We constructed the regulatory networks of whole-transcriptomic including differentially expressed mRNAs, circRNAs, and lncRNAs, and related biological functions and pathways involved in neurological disease, cell death and survival, energy and metabolism, et al. Our results also indicated that Cyr61 mRNA may play a role in the CCH-related cortical neuronal death.ConclusionWMD and cortical neuronal death are worthy of attention in the pathogenesis of CCH. Additionally, the present results provide potential evidence at the whole-transcription level for CCH, offering candidate biomarkers and therapeutic targets.

Stroke ◽  
2006 ◽  
Vol 37 (6) ◽  
pp. 1539-1545 ◽  
Author(s):  
Terubumi Watanabe ◽  
Ning Zhang ◽  
Meizi Liu ◽  
Ryota Tanaka ◽  
Yoshikuni Mizuno ◽  
...  

2015 ◽  
Vol 35 (3) ◽  
pp. 382-391 ◽  
Author(s):  
Yuji Ueno ◽  
Masato Koike ◽  
Yoshiaki Shimada ◽  
Hideki Shimura ◽  
Kenichiro Hira ◽  
...  

Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar rats subjected to ligation of the bilateral common carotid arteries (LBCCA) were treated with or without L-carnitine. L-carnitine-treated rats exhibited significantly reduced escape latency in the Morris water maze task at 28 days after chronic hypoperfusion. Western blot analysis indicated that L-carnitine increased levels of phosphorylated high-molecular weight neurofilament (pNFH), concurrent with a reduction in phosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN), and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) at 28 days after chronic hypoperfusion. L-carnitine reduced lipid peroxidation and oxidative DNA damage, and enhanced oligodendrocyte marker expression and myelin sheath thickness after chronic hypoperfusion. L-carnitine regulates the PTEN/Akt/mTOR signaling pathway, and enhances axonal plasticity while concurrently ameliorating oxidative stress and increasing oligodendrocyte myelination of axons, thereby improving WMLs and cognitive impairment in a rat chronic hypoperfusion model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Liu ◽  
Guifeng Zhao ◽  
Ling Jin ◽  
Jingping Shi

Normal brain function requires steady blood supply to maintain stable energy state. When blood supply to the brain becomes suboptimal for a long period of time, chronic cerebral hypoperfusion (CCH) and a variety of brain changes may occur. CCH causes white matter injury and cognitive impairment. The present study investigated the effect of nicotinamide (NAM) on CCH-induced cognitive impairment and white matter damage in mice. Male C57Bl/6J mice aged 10–12 weeks (mean age = 11 ± 1 weeks) and weighing 24 - 29 g (mean weight = 26.5 ± 2.5 g) were randomly assigned to three groups (eight mice/group): sham group, CCH group and NAM group. Chronic cerebral hypoperfusion (CCH) was induced using standard methods. The treatment group mice received intraperitoneal injection of NAM at a dose of 200 mg/kg body weight (bwt) daily for 30 days. Learning, memory, anxiety, and depression-like behaviors were measured using Morris water maze test (MWMT), open field test (OFT), sucrose preference test (SPT), and forced swim test (FST), respectively. White matter damage and remodeling were determined via histological/ immunohistochemical analyses, and western blotting, respectively. The results showed that the time spent in target quadrant, number of crossings and escape latency were significantly lower in CCH group than in sham group, but they were significantly increased by NAM (p < 0.05). Mice in NAM group moved significantly faster and covered longer distances, when compared with those in CCH group (p < 0.05). The percentage of time spent in open arms and the number of entries to the open arms were significantly lower in CCH group than in NAM group (p < 0.05). Moreover, anhedonia and histologic scores (index of myelin injury) were significantly higher in CCH group than in sham group, but they were significantly reduced by NAM (p < 0.05). The results of immunohistochemical staining and Western blotting showed that the protein expressions of 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and synaptophysin were significantly downregulated in CCH group, relative to sham group, but they were significantly upregulated by NAM (p < 0.05). These results indicate that NAM improves cognitive function in mice with CCH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxian Li ◽  
Di Wei ◽  
Zheng Zhu ◽  
Xiaomei Xie ◽  
Shuqin Zhan ◽  
...  

Chronic cerebral hypoperfusion (CCH) contributes to cognitive impairments, and hippocampal neuronal death is one of the key factors involved in this process. Dl-3-n-butylphthalide (D3NB) is a synthetic compound originally isolated from the seeds of Apium graveolens, which exhibits neuroprotective effects against some neurological diseases. However, the protective mechanisms of D3NB in a CCH model mimicking vascular cognitive impairment remains to be explored. We induced CCH in rats by a bilateral common carotid artery occlusion (BCCAO) operation. Animals were randomly divided into a sham-operated group, CCH 4-week group, CCH 8-week group, and the corresponding D3NB-treatment groups. Cultured primary hippocampal neurons were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic CCH in vitro. We aimed to explore the effects of D3NB treatment on hippocampal neuronal death after CCH as well as its underlying molecular mechanism. We observed memory impairment and increased hippocampal neuronal apoptosis in the CCH groups, combined with inhibition of CNTF/CNTFRα/JAK2/STAT3 signaling, as compared with that of sham control rats. D3NB significantly attenuated cognitive impairment in CCH rats and decreased hippocampal neuronal apoptosis after BCCAO in vivo or OGD/R in vitro. More importantly, D3NB reversed the inhibition of CNTF/CNTFRα expression and activated the JAK2/STAT3 pathway. Additionally, JAK2/STAT3 pathway inhibitor AG490 counteracted the protective effects of D3NB in vitro. Our results suggest that D3NB could improve cognitive function after CCH and that this neuroprotective effect may be associated with reduced hippocampal neuronal apoptosis via modulation of CNTF/CNTFRα/JAK2/STAT3 signaling pathways. D3NB may be a promising therapeutic strategy for vascular cognitive impairment induced by CCH.


2017 ◽  
Vol 131 (19) ◽  
pp. 2451-2468 ◽  
Author(s):  
Jessica Duncombe ◽  
Akihiro Kitamura ◽  
Yoshiki Hase ◽  
Masafumi Ihara ◽  
Raj N. Kalaria ◽  
...  

Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.


2006 ◽  
Vol 83 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Kyung-Ok Cho ◽  
Hyen O. La ◽  
Young-Jin Cho ◽  
Ki-Wug Sung ◽  
Seong Y. Kim

2019 ◽  
Vol 131 (3) ◽  
pp. 892-902 ◽  
Author(s):  
Ahmed Mansour ◽  
Kuniyasu Niizuma ◽  
Sherif Rashad ◽  
Akira Sumiyoshi ◽  
Rie Ryoke ◽  
...  

OBJECTIVEThe cognitive deficits of vascular dementia and the vasoocclusive state of moyamoya disease have often been mimicked with bilateral stenosis/occlusion of the common carotid artery (CCA) or internal carotid artery. However, the cerebral blood flow (CBF) declines abruptly in these models after ligation of the CCA, which differs from “chronic” cerebral hypoperfusion. While some modified but time-consuming techniques have used staged occlusion of both CCAs, others used microcoils for CCA stenosis, producing an adverse effect on the arterial endothelium. Thus, the authors developed a new chronic cerebral hypoperfusion (CCH) model with cognitive impairment and a low mortality rate in rats.METHODSMale Sprague-Dawley rats were subjected to unilateral CCA occlusion and contralateral induction of CCA stenosis (modified CCA occlusion [mCCAO]) or a sham operation. Cortical regional CBF (rCBF) was measured using laser speckle flowmetry. Cognitive function was assessed using a Barnes circular maze (BCM). MRI studies were performed 4 weeks after the operation to evaluate cervical and intracranial arteries and parenchymal injury. Behavioral and histological studies were performed at 4 and 8 weeks after surgery.RESULTSThe mCCAO group revealed a gradual CBF reduction with a low mortality rate (2.3%). White matter degeneration was evident in the corpus callosum and corpus striatum. Although the cellular density declined in the hippocampus, MRI revealed no cerebral infarctions after mCCAO. Immunohistochemistry revealed upregulated inflammatory cells and angiogenesis in the hippocampus and cerebral cortex. Results of the BCM assessment indicated significant impairment in spatial learning and memory in the mCCAO group. Although some resolution of white matter injury was observed at 8 weeks, the animals still had cognitive impairment.CONCLUSIONSThe mCCAO is a straightforward method of producing a CCH model in rats. It is associated with a low mortality rate and could potentially be used to investigate vascular disease, moyamoya disease, and CCH. This model was verified for an extended time point of 8 weeks after surgery.


Sign in / Sign up

Export Citation Format

Share Document