scholarly journals The Onset and Progression of Hippocampal Synaptic Plasticity Deficits in the Q175FDN Mouse Model of Huntington Disease

2019 ◽  
Vol 13 ◽  
Author(s):  
Jade G. Quirion ◽  
Matthew P. Parsons
Life Sciences ◽  
2021 ◽  
pp. 119707
Author(s):  
Kyle A. Brown ◽  
Jessica M. Carpenter ◽  
Collin J. Preston ◽  
Helaina D. Ludwig ◽  
Kendall B. Clay ◽  
...  

2019 ◽  
Vol 29 (5) ◽  
pp. 705-715 ◽  
Author(s):  
Chun-An Chen ◽  
Wei Wang ◽  
Steen E Pedersen ◽  
Ayush Raman ◽  
Michelle L Seymour ◽  
...  

Abstract Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein’s role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/− hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.


2006 ◽  
Vol 99 (4) ◽  
pp. 1320-1320 ◽  
Author(s):  
Richard J. Siarey ◽  
Angelina Kline-Burgess ◽  
Madelaine Cho ◽  
Andrea Balbo ◽  
Tyler K. Best ◽  
...  

2014 ◽  
Vol 63 ◽  
pp. 12-19 ◽  
Author(s):  
Tatjana Begenisic ◽  
Laura Baroncelli ◽  
Gabriele Sansevero ◽  
Marco Milanese ◽  
Tiziana Bonifacino ◽  
...  

2020 ◽  
Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

Abstract Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, mice lacking translin/trax exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome. Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic PKA activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression, a hallmark of the mouse model of fragile X syndrome. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling.


Author(s):  
Alan Jung Park ◽  
Mahesh Shivarama Shetty ◽  
Jay M. Baraban ◽  
Ted Abel

AbstractActivity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, mice lacking translin/trax exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome. Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic PKA activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression, a hallmark of the mouse model of fragile X syndrome. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling.


Sign in / Sign up

Export Citation Format

Share Document