scholarly journals Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe

2019 ◽  
Vol 13 ◽  
Author(s):  
Sree I. Motipally ◽  
Kathryne M. Allen ◽  
Daniel K. Williamson ◽  
Gary Marsat
2001 ◽  
Vol 85 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Joseph Bastian ◽  
Jerry Nguyenkim

This report describes the variability of spontaneous firing characteristics of sensory neurons, electrosensory lateral line lobe (ELL) pyramidal cells, within the electrosensory lateral line lobe of weakly electric fish in vivo. We show that these cells' spontaneous firing frequency, measures of spike train regularity (interspike interval coefficient of variation), and the tendency of these cells to produce bursts of action potentials are correlated with the size of the cell's apical dendritic arbor. We also show that bursting behavior may be influenced or controlled by descending inputs from higher centers that provide excitatory and inhibitory inputs to the pyramidal cells' apical dendrites. Pyramidal cells were classified as “bursty” or “nonbursty” according to whether or not spike trains deviated significantly from the expected properties of random (Poisson) spike trains of the same average firing frequency, and, in the case of bursty cells, the maximum within-burst interspike interval characteristic of bursts was determined. Each cell's probability of producing bursts above the level expected for a Poisson spike train was determined and related to spontaneous firing frequency and dendritic morphology. Pyramidal cells with large apical dendritic arbors have lower rates of spontaneous activity and higher probabilities of producing bursts above the expected level, while cells with smaller apical dendrites fire at higher frequencies and are less bursty. The effect of blocking non- N-methyl-d-aspartate (non-NMDA) glutamatergic synaptic inputs to the apical dendrites of these cells, and to local inhibitory interneurons, significantly reduced the spontaneous occurrence of spike bursts and intracellular injection of hyperpolarizing current mimicked this effect. The results suggest that bursty firing of ELL pyramidal cells may be under descending control allowing activity in electrosensory feedback pathways to influence the firing properties of sensory neurons early in the processing hierarchy.


2019 ◽  
Author(s):  
Sree I. Motipally ◽  
Kathryne M. Allen ◽  
Daniel K. Williamson ◽  
Gary Marsat

AbstractHeterogeneity of neural properties within a given neural class is ubiquitous in the nervous system and permits different sub-classes of neurons to specialize for specific purposes. This principle has been thoroughly investigated in the hindbrain of the weakly electric fish A. leptorhynchus in the primary electrosensory area, the Electrosensory Lateral Line lobe (ELL). The pyramidal cells that receive inputs from tuberous electroreceptors are organized in three maps in distinct segments of the ELL. The properties of these cells vary greatly across maps due to differences in connectivity, receptor expression, and ion channel composition. These cells are a seminal example of bursting neurons and their bursting dynamic relies on the presence of voltage-gated Na+ channels in the extensive apical dendrites of the superficial pyramidal cells. Other ion channels can affect burst generation and their expression varies across ELL neurons and segments. For example, SK channels cause hyperpolarizing after-potentials decreasing the likelihood of bursting, yet bursting propensity is similar across segments. We question whether the depolarizing mechanism that generates the bursts presents quantitative differences across segments that could counterbalance other differences having the opposite effect. Although their presence and role are established, the distribution and density of the apical dendrites’ Na+ channels have not been quantified and compared across ELL maps. Therefore, we test the hypothesis that Na+ channel density varies across segment by quantifying their distribution in the apical dendrites of immunolabeled ELL sections. We found the Na+ channels to be two-fold denser in the lateral segment than in the centro-medial segment, the centro-lateral segment being intermediate. Our results imply that this differential expression of voltage-gated Na+ channels could counterbalance or interact with other aspects of neuronal physiology that vary across segments (e.g. SK channels). We argue that burst coding of sensory signals, and the way the network regulates bursting, should be influenced by these variations in Na+ channel density.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ali Karimi ◽  
Jan Odenthal ◽  
Florian Drawitsch ◽  
Kevin M Boergens ◽  
Moritz Helmstaedter

We investigated the synaptic innervation of apical dendrites of cortical pyramidal cells in a region between layers (L) 1 and 2 using 3-D electron microscopy applied to four cortical regions in mouse. We found the relative inhibitory input at the apical dendrite’s main bifurcation to be more than 2-fold larger for L2 than L3 and L5 thick-tufted pyramidal cells. Towards the distal tuft dendrites in upper L1, the relative inhibitory input was at least about 2-fold larger for L5 pyramidal cells than for all others. Only L3 pyramidal cells showed homogeneous inhibitory input fraction. The inhibitory-to-excitatory synaptic ratio is thus specific for the types of pyramidal cells. Inhibitory axons preferentially innervated either L2 or L3/5 apical dendrites, but not both. These findings describe connectomic principles for the control of pyramidal cells at their apical dendrites and support differential computational properties of L2, L3 and subtypes of L5 pyramidal cells in cortex.


1990 ◽  
Vol 240 (1299) ◽  
pp. 433-451 ◽  

A brief introduction to the brain-mind problem leads on to a survey of the neuronal structure of the cerebral cortex. It is proposed that the basic receptive units are the bundles or clusters of apical dendrites of the pyramidal cells of laminae V and III-II as described by Fleischhauer and Peters and their associates. There are up to 100 apical dendrites in these receptive units, named dendrons. Each dendron would have an input of up to 100000 spine synapses. There are about 40 million dendrons in the human cerebral cortex. A study of the influence of mental events on the brain leads to the hypothesis that all mental events, the whole of the World 2 of Popper, are composed of mental units, each carrying its own characteristic mental experience. It is further proposed that each mental unit, named psychon, is uniquely linked to a dendron. So the mind-brain problem reduces to the interaction between a dendron and its psychon for all the 40 million linked units. In my 1986 paper ( Proc. R. Soc. Lond . B 227, 411-428) on the mind-brain problem, there was developed the concept that the operation of the synaptic microsites involved displacement of particles so small that they were within range of the uncertainty principle of Heisenberg. The psychon-dendron interaction provides a much improved basis for effective selection by a process analogous to a quantal probability field. In the fully developed hypothesis psychons act on dendrons in the whole world of conscious experiences and dendrons act on psychons in all perceptions and memories. It is shown how these interactions involve no violation of the conservation laws. There are great potentialities of these unitary concepts, for example as an explanation of the global nature of a visual experience from moment to moment. It would seem that there can be psychons not linked to dendrons, but only to other psychons, creating what we may call a psychon world.


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


2004 ◽  
Vol 91 (1) ◽  
pp. 324-335 ◽  
Author(s):  
H. J. Abel ◽  
J.C.F. Lee ◽  
J. C. Callaway ◽  
R. C. Foehring

We examined the effects of recent discharge activity on [Ca2+]i in neocortical pyramidal cells. Our data confirm and extend the observation that there is a linear relationship between plateau [Ca2+]i and firing frequency in soma and proximal apical dendrites. The rise in [Ca2+] activates K+ channels underlying the afterhyperpolarization (AHP), which consists of 2 Ca2+-dependent components: the medium AHP (mAHP) and the slow AHP (sAHP). The mAHP is blocked by apamin, indicating involvement of SK-type Ca2+-dependent K+ channels. The identity of the apamin-insensitive sAHP channel is unknown. We compared the sAHP and the mAHP with regard to: 1) number and frequency of spikes versus AHP amplitude; 2) number and frequency of spikes versus [Ca2+]i; 3) IAHP versus [Ca2+]i. Our data suggest that sAHP channels require an elevation of [Ca2+]i in the cytoplasm, rather than at the membrane, consistent with a role for a cytoplasmic intermediate between Ca2+ and the K+ channels. The mAHP channels appear to respond to a restricted Ca2+ domain.


1998 ◽  
Vol 80 (6) ◽  
pp. 3214-3232 ◽  
Author(s):  
Neil J. Berman ◽  
Leonard Maler

Berman, Neil J. and Leonard Maler. Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering. J. Neurophysiol. 80: 3214–3232, 1998. The inhibition controlling the indirect descending feedback (parallel fibers originating from cerebellar granule cells in the eminentia posterior pars granularis) to electrosensory lateral line lobe (ELL) pyramidal cells was studied using intracellular recording techniques in vitro. Parallel fibers (PF) contact stellate cells and dendrites of ventral molecular layer (VML) GABAergic interneurons. Stellate cells provide local input to pyramidal cell distal dendrites, whereas VML cells contact their somata and proximal dendrites. Single-pulse stimulation of PF evoked graded excitatory postsynaptic potentials (EPSPs) that were blocked by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-d-aspartate (NMDA) antagonists. The EPSPs peaked at 6.4 ± 1.8 ms (mean ± SE; n = 11) but took >50 ms to decay completely. Tetanic stimulation (100 ms, 100 Hz) produced a depolarizing wave with individual EPSPs superimposed. The absolute amplitude of the individual EPSPs decreased during the train. Spike rates, established by injected current, mostly were increased, but in some cells were decreased, by tetanic stimulation. Global application of a γ-aminobutyric acid-A (GABAA) antagonist to the recorded cell's soma and apical dendritic region increased the EPSP peak and decay phase amplitudes. Tetanic stimulation always increased current-evoked spike rates after GABAA blockade during, and for several hundred milliseconds after, the stimulus. Application of a GABAB antagonist did not have any significant effects on the PF-evoked response. This, and the lack of any long hyperpolarizing inhibitory postsynaptic potentials, suggests that VML and stellate cell inhibition does not involve GABAB receptors. Focal GABAA antagonist applications to the dorsal molecular layer (DML) and pyramidal cell layer (PCL) had contrasting effects on PF-evoked EPSPs. DML GABAA blockade significantly increased the EPSP peak amplitude but not the decay phase of the EPSP, whereas PCL GABAA-blockade significantly increased the decay phase, but not the EPSP peak, amplitude. The order of antagonist application did not affect the outcome. On the basis of the known circuitry of the ELL, we conclude that the distal inhibition originated from GABAergic molecular layer stellate cells and the proximal inhibition originated from GABAergic cells of the ventral molecular layer (VML cells). Computer modeling of distal and proximal inhibition suggests that intrinsic differences in IPSP dynamics between the distal and proximal sites may be amplified by voltage-dependent NMDA receptor and persistent sodium currents. We propose that the different time courses of stellate cell and VML cell inhibition allows them to act as low- and high-pass filters respectively on indirect descending feedback to ELL pyramidal cells.


2014 ◽  
Vol 112 (3) ◽  
pp. 631-643 ◽  
Author(s):  
Allan Kjeldsen Hansen ◽  
Steen Nedergaard ◽  
Mogens Andreasen

Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1–2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band.


Sign in / Sign up

Export Citation Format

Share Document