scholarly journals Activity and Coupling to Hippocampal Oscillations of Median Raphe GABAergic Cells in Awake Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Marta Jelitai ◽  
Albert M. Barth ◽  
Ferenc Komlósi ◽  
Tamás F. Freund ◽  
Viktor Varga

Ascending serotonergic/glutamatergic projection from the median raphe region (MRR) to the hippocampal formation regulates both encoding and consolidation of memory and the oscillations associated with them. The firing of various types of MRR neurons exhibits rhythmic modulation coupled to hippocampal oscillatory activity. A possible intermediary between rhythm-generating forebrain regions and entrained ascending modulation may be the GABAergic circuit in the MRR, known to be targeted by a diverse array of top-down inputs. However, the activity of inhibitory MRR neurons in an awake animal is still largely unexplored. In this study, we utilized whole cell patch-clamp, single cell, and multichannel extracellular recordings of GABAergic and non-GABAergic MRR neurons in awake, head-fixed mice. First, we have demonstrated that glutamatergic and serotonergic neurons receive both transient, phasic, and sustained tonic inhibition. Then, we observed substantial heterogeneity of GABAergic firing patterns but a marked modulation of activity by brain states and fine timescale coupling of spiking to theta and ripple oscillations. We also uncovered a correlation between the preferred theta phase and the direction of activity change during ripples, suggesting the segregation of inhibitory neurons into functional groups. Finally, we could detect complementary alteration of non-GABAergic neurons’ ripple-coupled activity. Our findings support the assumption that the local inhibitory circuit in the MRR may synchronize ascending serotonergic/glutamatergic modulation with hippocampal activity on a subsecond timescale.

1999 ◽  
Vol 6 (2) ◽  
pp. 153-167 ◽  
Author(s):  
Douglas A. Nitz ◽  
Bruce L. McNaughton

Hippocampal EEG, GABAergic interneurons, and principal cells were recorded simultaneously as rats foraged within one of three environments both before and after modulation of serotonergic inputs to the hippocampus. Median raphe microinjections of the 5-HT1a receptor agonist 8-OH-DPAT were made to produce inhibition of serotonergic neurons in this region. Such microinjections produced behavioral arousal and increases in the amplitude of hippocampal EEG theta. Consistent with the pattern of serotonergic innervation of the hippocampus, the GABAergic interneuron population was affected differentially by the microinjections. Principal cells were generally unaffected by the manipulation and maintained robust spatial firing correlates within the foraging environment. The results provide basic data on the relationship between serotonergic median raphe neurons and hippocampal activity in a behaving animal. The data suggest that behavioral responses to manipulation of the serotonergic system are mediated by brain regions other than the hippocampus or are mediated through changes in the activity of hippocampal interneurons.


2007 ◽  
Vol 195 (4) ◽  
pp. 605-615 ◽  
Author(s):  
Anh Lê Dzung ◽  
Douglas Funk ◽  
Stephen Harding ◽  
Walter Juzytsch ◽  
Zhaoxia Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document