scholarly journals Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

2013 ◽  
Vol 4 ◽  
Author(s):  
Liying Zhang ◽  
Rahul Makwana ◽  
Sumit Sharma
1996 ◽  
Vol 34 (5) ◽  
pp. 375-381 ◽  
Author(s):  
L. Voo ◽  
S. Kumaresan ◽  
F. A. Pintar ◽  
N. Yoganandan ◽  
A. Sances

Author(s):  
M. S. Chafi ◽  
G. Karami ◽  
M. Ziejewski

In this paper, an integrated numerical approach is introduced to determine the human brain responses when the head is exposed to blast explosions. The procedure is based on a 3D non-linear finite element method (FEM) that implements a simultaneous conduction of explosive detonation, shock wave propagation, and blast-brain interaction of the confronting human head. Due to the fact that there is no reported experimental data on blast-head interactions, several important checkpoints should be made before trusting the brain responses resulting from the blast modeling. These checkpoints include; a) a validated human head FEM subjected to impact loading; b) a validated air-free blast propagation model; and c) the verified blast waves-solid interactions. The simulations presented in this paper satisfy the above-mentioned requirements and checkpoints. The head model employed here has been validated again impact loadings. In this respect, Chafi et al. [1] have examined the head model against the brain intracranial pressure, and brain’s strains under different impact loadings of cadaveric experimental tests of Hardy et al. [2]. In another report, Chafi et al. [3] has examined the air-blast and blast-object simulations using Arbitrary Lagrangian Eulerian (ALE) multi-material and Fluid-Solid Interaction (FSI) formulations. The predicted results of blast propagation matched very well with those of experimental data proving that this computational solid-fluid algorithm is able to accurately predict the blast wave propagation in the medium and the response of the structure to blast loading. Various aspects of blast wave propagations in air as well as when barriers such as solid walls are encountered have been studied. With the head model included, different scenarios have been assumed to capture an appropriate picture of the brain response at a constant stand-off distance of nearly 80cm (2.62 feet) from the explosion core. The impact of brain response due to severity of the blast under different amounts of the explosive material, TNT (0.0838, 0.205, and 0.5lb) is examined. The accuracy of the modeling can provide the information to design protection facilities for human head for the hostile environments.


2008 ◽  
Vol 122 (5) ◽  
pp. 359-366 ◽  
Author(s):  
Jean-Sébastien Raul ◽  
Caroline Deck ◽  
Rémy Willinger ◽  
Bertrand Ludes

Author(s):  
Devon Downes ◽  
Amal Bouamoul ◽  
Simon Ouellet ◽  
Manouchehr Nejad Ensan

Traumatic Blast Injury (TBI) associated with the human head is caused by exposure to a blast loading, resulting in decreased level of consciousness, skull fracture, lesions, or death. This paper presents the simulation of blast loading of a human head form from a free-field blast with the end goal of providing insight into how TBI develops in the human head. The developed numerical model contains all the major components of the human head, the skull, and brain, including the tentorium, cerebral falx, and gray and white matter. A nonlinear finite element analysis was employed to perform the simulation using the Arbitrary Lagrangian–Eulerian finite element method. The simulation captures the propagation of the blast wave through the air, its interaction with the skull, and its transition into the brain matter. The model quantifies the pressure histories of the blast wave from the explosive source to the overpressure on the skull and the intracranial pressure. This paper discusses the technical approach used to model the head, the outcome from the analysis, and the implication of the results on brain injury.


1997 ◽  
Vol 102 (4) ◽  
pp. 267-278 ◽  
Author(s):  
Helmut Buchner ◽  
Gunter Knoll ◽  
Manfred Fuchs ◽  
Adrian Rienäcker ◽  
Rainer Beckmann ◽  
...  

Author(s):  
G. Krishnaveni ◽  
D. Dominic Xavier ◽  
R. Sarathkumar ◽  
G. Kavitha ◽  
M. Senbagan

Because of increase in threat from militant groups and during war exposure to blast wave from improvised explosive devices, Traumatic Brain Injury (TBI), a signature injury is on rise worldwide. During blast, the biological system is exposed to a sudden blast over pressure which is several times higher than the ambient pressure causing the damage in the brain. The severity of TBI due to air blast may vary from brief change in mental status or consciousness (termed as mild) to extended period of unconsciousness or memory loss after injuries (termed as severe). The blast wave induced impact on head propagates as shock wave with the broad spectrum of frequencies and stress concentrations in the brain. The primary blast TBI is directly induced by pressure differentials across the skull/fluid/soft tissue interfaces and is further reinforced by the reflected stress waves within the cranial cavity, leading to stress concentrations in certain regions of the brain. In this paper, an attempt has been made to study the behaviour of a human brain model subjected to blast wave based on finite element model using LSDYNA code. The parts of a typical human head such as skull, scalp, CSF, brain are modelled using finite element with properties assumed based on available literature. The model is subjected to blast from frontal lobe, occipital lobe, temporal lobe of the brain. The interaction of the blast wave with the head and subsequent transformation of various forms of shock energy internally have been demonstrated in the human head model. The brain internal pressure levels and the shear stress distribution in the various lobes of the brain such as frontal, parietal, temporal and occipital are determined and presented.


Sign in / Sign up

Export Citation Format

Share Document