scholarly journals Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation

2021 ◽  
Vol 12 ◽  
Author(s):  
Elias Ebrahimzadeh ◽  
Mohammad Shams ◽  
Masoud Seraji ◽  
Seyyed Mostafa Sadjadi ◽  
Lila Rajabion ◽  
...  

Conventional EEG-fMRI methods have been proven to be of limited use in the sense that they cannot reveal the information existing in between the spikes. To resolve this issue, the current study obtains the epileptic components time series detected on EEG and uses them to fit the Generalized Linear Model (GLM), as a substitution for classical regressors. This approach allows for a more precise localization, and equally importantly, the prediction of the future behavior of the epileptic generators. The proposed method approaches the localization process in the component domain, rather than the electrode domain (EEG), and localizes the generators through investigating the spatial correlation between the candidate components and the spike template, as well as the medical records of the patient. To evaluate the contribution of EEG-fMRI and concordance between fMRI and EEG, this method was applied on the data of 30 patients with refractory epilepsy. The results demonstrated the significant numbers of 29 and 24 for concordance and contribution, respectively, which mark improvement as compared to the existing literature. This study also shows that while conventional methods often fail to properly localize the epileptogenic zones in deep brain structures, the proposed method can be of particular use. For further evaluation, the concordance level between IED-related BOLD clusters and Seizure Onset Zone (SOZ) has been quantitatively investigated by measuring the distance between IED/SOZ locations and the BOLD clusters in all patients. The results showed the superiority of the proposed method in delineating the spike-generating network compared to conventional EEG-fMRI approaches. In all, the proposed method goes beyond the conventional methods by breaking the dependency on spikes and using the outside-the-scanner spike templates and the selected components, achieving an accuracy of 97%. Doing so, this method contributes to improving the yield of EEG-fMRI and creates a more realistic perception of the neural behavior of epileptic generators which is almost without precedent in the literature.

2021 ◽  
Vol 15 ◽  
Author(s):  
Chang Cai ◽  
Jessie Chen ◽  
Anne M. Findlay ◽  
Danielle Mizuiri ◽  
Kensuke Sekihara ◽  
...  

Magnetoencephalography (MEG) is increasingly used for presurgical planning in people with medically refractory focal epilepsy. Localization of interictal epileptiform activity, a surrogate for the seizure onset zone whose removal may prevent seizures, is challenging and depends on the use of multiple complementary techniques. Accurate and reliable localization of epileptiform activity from spontaneous MEG data has been an elusive goal. One approach toward this goal is to use a novel Bayesian inference algorithm—the Champagne algorithm with noise learning—which has shown tremendous success in source reconstruction, especially for focal brain sources. In this study, we localized sources of manually identified MEG spikes using the Champagne algorithm in a cohort of 16 patients with medically refractory epilepsy collected in two consecutive series. To evaluate the reliability of this approach, we compared the performance to equivalent current dipole (ECD) modeling, a conventional source localization technique that is commonly used in clinical practice. Results suggest that Champagne may be a robust, automated, alternative to manual parametric dipole fitting methods for localization of interictal MEG spikes, in addition to its previously described clinical and research applications.


2018 ◽  
Vol 19 ◽  
pp. 758-766 ◽  
Author(s):  
Erika L. Juárez-Martinez ◽  
Ida A. Nissen ◽  
Sander Idema ◽  
Demetrios N. Velis ◽  
Arjan Hillebrand ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.


Author(s):  
Adam Li ◽  
Chester Huynh ◽  
Zachary Fitzgerald ◽  
Iahn Cajigas ◽  
Damian Brusko ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 118133
Author(s):  
Junling Wang ◽  
Bin Jing ◽  
Ru Liu ◽  
Donghong Li ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document