scholarly journals From Visual Perception to Aesthetic Appeal: Brain Responses to Aesthetically Appealing Natural Landscape Movies

2021 ◽  
Vol 15 ◽  
Author(s):  
Ayse Ilkay Isik ◽  
Edward A. Vessel

During aesthetically appealing visual experiences, visual content provides a basis for computation of affectively tinged representations of aesthetic value. How this happens in the brain is largely unexplored. Using engaging video clips of natural landscapes, we tested whether cortical regions that respond to perceptual aspects of an environment (e.g., spatial layout, object content and motion) were directly modulated by rated aesthetic appeal. Twenty-four participants watched a series of videos of natural landscapes while being scanned using functional magnetic resonance imaging (fMRI) and reported both continuous ratings of enjoyment (during the videos) and overall aesthetic judgments (after each video). Although landscape videos engaged a greater expanse of high-level visual cortex compared to that observed for images of landscapes, independently localized category-selective visual regions (e.g., scene-selective parahippocampal place area and motion-selective hMT+) were not significantly modulated by aesthetic appeal. Rather, a whole-brain analysis revealed modulations by aesthetic appeal in ventral (collateral sulcus) and lateral (middle occipital sulcus, posterior middle temporal gyrus) clusters that were adjacent to scene and motion selective regions. These findings suggest that aesthetic appeal per se is not represented in well-characterized feature- and category-selective regions of visual cortex. Rather, we propose that the observed activations reflect a local transformation from a feature-based visual representation to a representation of “elemental affect,” computed through information-processing mechanisms that detect deviations from an observer’s expectations. Furthermore, we found modulation by aesthetic appeal in subcortical reward structures but not in regions of the default-mode network (DMN) nor orbitofrontal cortex, and only weak evidence for associated changes in functional connectivity. In contrast to other visual aesthetic domains, aesthetically appealing interactions with natural landscapes may rely more heavily on comparisons between ongoing stimulation and well-formed representations of the natural world, and less on top-down processes for resolving ambiguities or assessing self-relevance.

2018 ◽  
Author(s):  
Anthony Stigliani ◽  
Brianna Jeska ◽  
Kalanit Grill-Spector

ABSTRACTHow do high-level visual regions process the temporal aspects of our visual experience? While the temporal sensitivity of early visual cortex has been studied with fMRI in humans, temporal processing in high-level visual cortex is largely unknown. By modeling neural responses with millisecond precision in separate sustained and transient channels, and introducing a flexible encoding framework that captures differences in neural temporal integration time windows and response nonlinearities, we predict fMRI responses across visual cortex for stimuli ranging from 33 ms to 20 s. Using this innovative approach, we discovered that lateral category-selective regions respond to visual transients associated with stimulus onsets and offsets but not sustained visual information. Thus, lateral category-selective regions compute moment-tomoment visual transitions, but not stable features of the visual input. In contrast, ventral category-selective regions respond to both sustained and transient components of the visual input. Responses to sustained stimuli exhibit adaptation, whereas responses to transient stimuli are surprisingly larger for stimulus offsets than onsets. This large offset transient response may reflect a memory trace of the stimulus when it is no longer visible, whereas the onset transient response may reflect rapid processing of new items. Together, these findings reveal previously unconsidered, fundamental temporal mechanisms that distinguish visual streams in the human brain. Importantly, our results underscore the promise of modeling brain responses with millisecond precision to understand the underlying neural computations.AUTHOR SUMMARYHow does the brain encode the timing of our visual experience? Using functional magnetic resonance imaging (fMRI) and a temporal encoding model with millisecond resolution, we discovered that visual regions in the lateral and ventral processing streams fundamentally differ in their temporal processing of the visual input. Regions in lateral temporal cortex process visual transients associated with stimulus onsets and offsets but not the unchanging aspects of the visual input. That is, they compute moment-to-moment changes in the visual input. In contrast, regions in ventral temporal cortex process both stable and transient components, with the former exhibiting adaptation. Surprisingly, in these ventral regions responses to stimulus offsets were larger than onsets. We suggest that the former may reflect a memory trace of the stimulus, when it is no longer visible, and the latter may reflect rapid processing of new items at stimulus onset. Together, these findings (i) reveal a fundamental temporal mechanism that distinguishes visual streams and (ii) highlight both the importance and utility of modeling brain responses with millisecond precision to understand the temporal dynamics of neural computations in the human brain.


2021 ◽  
Author(s):  
Sushrut Thorat ◽  
Marius V. Peelen

Feature-based attention supports the selection of goal-relevant stimuli by enhancing the visual processing of attended features. A defining property of feature-based attention is that it modulates visual processing beyond the focus of spatial attention. Previous work has reported such spatially-global effects for low-level features such as color and orientation, as well as for faces. Here, using fMRI, we provide evidence for spatially-global attentional modulation for human bodies. Participants were cued to search for one of six object categories in two vertically-aligned images. Two additional, horizontally-aligned, images were simultaneously presented but were never task-relevant across three experimental sessions. Analyses time-locked to the objects presented in these task-irrelevant images revealed that responses evoked by body silhouettes were modulated by the participants' top-down attentional set, becoming more body-selective when participants searched for bodies in the task-relevant images. These effects were observed both in univariate analyses of the body-selective cortex and in multivariate analyses of the object-selective visual cortex. Additional analyses showed that this modulation reflected response gain rather than a bias induced by the cues, and that it reflected enhancement of body responses rather than suppression of non-body responses. Finally, the features of early layers of a convolutional neural network trained for object recognition could not be used to accurately categorize body silhouettes, indicating that the fMRI results were unlikely to reflect selection based on low-level features. These findings provide the first evidence for spatially-global feature-based attention for human bodies, linking this modulation to body representations in high-level visual cortex.


2015 ◽  
Vol 35 (36) ◽  
pp. 12412-12424 ◽  
Author(s):  
A. Stigliani ◽  
K. S. Weiner ◽  
K. Grill-Spector

2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Ben Deen ◽  
Hilary Richardson ◽  
Daniel D. Dilks ◽  
Atsushi Takahashi ◽  
Boris Keil ◽  
...  

Author(s):  
Maarten J. G. M. van Emmerik

Abstract Feature modeling enables the specification of a model with standardized high-level shape aspects that have a functional meaning for design or manufacturing. In this paper an interactive graphical approach to feature-based modeling is presented. The user can represent features as new CSG primitives, specified as a Boolean combination of halfspaces. Constraints between halfspaces specify the geometric characteristics of a feature and control feature validity. Once a new feature is defined and stored in a library, it can be used in other objects and positioned, oriented and dimensioned by direct manipulation with a graphics cursor. Constraints between features prevent feature interference and specify spatial relations between features.


Sign in / Sign up

Export Citation Format

Share Document