scholarly journals Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications

2021 ◽  
Vol 15 ◽  
Author(s):  
Houyou Fan ◽  
Zijian Zheng ◽  
Zixiao Yin ◽  
Jianguo Zhang ◽  
Guohui Lu

Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question.Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology.Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145.Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3–49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05).Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.

Neurology ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. e1109-e1120 ◽  
Author(s):  
W.M. Michael Schuepbach ◽  
Lisa Tonder ◽  
Alfons Schnitzler ◽  
Paul Krack ◽  
Joern Rau ◽  
...  

ObjectiveTo investigate predictors for improvement of disease-specific quality of life (QOL) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson disease (PD) with early motor complications.MethodsWe performed a secondary analysis of data from the previously published EARLYSTIM study, a prospective randomized trial comparing STN-DBS (n = 124) to best medical treatment (n = 127) after 2 years follow-up with disease-specific QOL (39-item Parkinson's Disease Questionnaire summary index [PDQ-39-SI]) as the primary endpoint. Linear regression analyses of the baseline characteristics age, disease duration, duration of motor complications, and disease severity measured at baseline with the Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS-III “off” and “on” medications, UPDRS-IV) were conducted to determine predictors of change in PDQ-39-SI.ResultsPDQ-39-SI at baseline was correlated to the change in PDQ-39-SI after 24 months in both treatment groups (p < 0.05). The higher the baseline score (worse QOL) the larger the improvement in QOL after 24 months. No correlation was found for any of the other baseline characteristics analyzed in either treatment group.ConclusionImpaired QOL as subjectively evaluated by the patient is the most important predictor of benefit in patients with PD and early motor complications, fulfilling objective gold standard inclusion criteria for STN-DBS. Our results prompt systematically including evaluation of disease-specific QOL when selecting patients with PD for STN-DBS.Clinicaltrials.gov identifierNCT00354133.


2018 ◽  
Vol 130 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina M. Chapple ◽  
Margaret Lambert ◽  
Holly A. Shill ◽  
...  

OBJECTIVERecent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.METHODSPD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.RESULTSSix-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).CONCLUSIONSIn PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.


2022 ◽  
Author(s):  
Feng Yin ◽  
Mingming Zhao ◽  
Xin Yan ◽  
Tong Li ◽  
Hui Chen ◽  
...  

Abstract Subthalamic nucleus (STN) deep brain stimulation (DBS) has been proven to be an alternative target choice for refractory isolated cervical dystonia (CD). However, assessments of its short and long-term safety, efficacy, and sustained effectiveness have been limited to few reports. Here, we evaluated nine consecutive refractory isolated CD patients who underwent bilateral STN DBS and accepted to short and long-term follow-up in this retrospective study. Seven time points were used to see the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores (pre-operation [baseline], 1, 3, 6, 12, 24 months post-operation and last follow-up) to assess improvement of dystonic symptoms. The 36-item Short-Form General Health Survey (SF-36) scores obtained at pre-operation and last follow-up to assess the changes in quality of life. All patients tolerated surgery well and acquired observable clinical benefits from STN DBS therapy. All patients achieved a considerable improvement in quality of life at the last follow-up. The hardware-related adverse events can be tolerated and the stimulation-related adverse events can be ameliorated by programming. Our data support the idea that bilateral STN DBS is a safety and effective method for the treatment of refractory isolated CD, with persistent and remarkable improvement in both movement and quality of life.


2020 ◽  
Vol 132 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Suzhen Lin ◽  
Yiwen Wu ◽  
Hongxia Li ◽  
Chencheng Zhang ◽  
Tao Wang ◽  
...  

OBJECTIVESurgical procedures involving deep brain stimulation (DBS) of the globus pallidus internus (GPi) or subthalamic nucleus (STN) are well-established treatments for isolated dystonia. However, selection of the best stimulation target remains a matter of debate. The authors’ objective was to compare the effectiveness of DBS of the GPi and the STN in patients with isolated dystonia.METHODSIn this matched retrospective cohort study, the authors searched an institutional database for data on all patients with isolated dystonia who had undergone bilateral implantation of DBS electrodes in either the GPi or STN in the period from January 30, 2014, to June 30, 2017. Standardized assessments of dystonia and health-related quality of life using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and SF-36 were conducted before and at 1, 6, and 12 months after surgery. No patients were lost to the 6-month follow-up; 5 patients were lost to the 12-month follow-up.RESULTSBoth GPi (14 patients) and STN (16 patients) stimulation produced significant improvement in dystonia and quality of life in all 30 patients found in the database search. At the 1-month follow-up, however, the percentage improvement in the BFMDRS total movement score was significantly (p = 0.01) larger after STN DBS (64%) than after GPi DBS (48%). At the 12-month follow-up, the percentage improvement in the axis subscore was significantly (p = 0.03) larger after GPi DBS (93%) than after STN DBS (83%). Also, the total amount of electrical energy delivered was significantly (p = 0.008) lower with STN DBS than with GPi DBS (124 ± 52 vs 192 ± 65 μJ, respectively).CONCLUSIONSThe GPi and STN are both effective targets in alleviating dystonia and improving quality of life. However, GPi stimulation may be better for patients with axial symptoms. Moreover, STN stimulation may produce a larger clinical response within 1 month after surgery and may have a potential economic advantage in terms of lower battery consumption.


2007 ◽  
Vol 106 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Jerzy L. Slowinski ◽  
John D. Putzke ◽  
Ryan J. Uitti ◽  
John A. Lucas ◽  
Margaret F. Turk ◽  
...  

Object The object of this study was to assess the results of unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) for management of advanced Parkinson disease (PD). Methods A clinical series of 24 patients (mean age 71 years, range 56–80 years) with medically intractable PD, who were undergoing unilateral magnetic resonance imaging–targeted, electrophysiologically guided STN DBS, completed a battery of qualitative and quantitative outcome measures preoperatively (baseline) and postoperatively, using a modified Core Assessment Program for Intracerebral Transplantations protocol. The mean follow-up period was 9 months. Statistically significant improvement was observed in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II score (18%), the total UPDRS PART III score (31%), the contralateral UPDRS Part III score (63%), and scores for axial motor features (19%), contralateral tremor (88%), rigidity (60%), bradykinesia (54%), and dyskinesia (69%), as well as the Parkinson's Disease Quality of Life questionnaire score (15%) in the on-stimulation state compared with baseline. Ipsilateral symptoms improved by approximately 15% or less. Performance on the Purdue pegboard test improved in the contralateral hand in the on-stimulation state compared with the off-stimulation state (38%, p < 0.05). The daily levodopa-equivalent dose was reduced by 21% (p = 0.018). Neuropsychological tests revealed an improvement in mental flexibility and a trend toward reduced letter fluency. There were no permanent surgical complications. Of the 16 participants with symmetrical disease, five required implantation of the DBS unit on the second side. Conclusions Unilateral STN DBS is an effective and safe treatment for selected patients with advanced PD. Unilateral STN DBS provides improvement of contralateral motor symptoms of PD as well as quality of life, reduces requirements for medication, and possibly enhances mental flexibility. This method of surgical treatment may be associated with a reduced risk and may provide an alternative to bilateral STN DBS for PD, especially in older patients or patients with asymmetry of parkinsonism.


2020 ◽  
Vol 9 (3) ◽  
pp. 69
Author(s):  
Kuo Liu

<p>Deep Brain Stimulation, especially STN-DBS, is one of the most prevalent treatments for the Parkinson’s Disease. Previous researches already showed its positive effects on the general conditions of the patients but lack evaluation of its influence on the cognitive ability of the patients. A comparison in the effect of DBS and surgical lesioning procedures can determine DBS’s influence on the quality of life and confirm whether it is the most optimal treatment. This proposal reviewed previous researches about the influence of STN-DBS and proposed a study on its influence of patients’ cognitive ability.</p>


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 259-259
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina Chapple ◽  
Margaret Lambert ◽  
Holly Shill ◽  
...  

Abstract INTRODUCTION Recent studies show similar clinical outcomes in Parkinson's disease (PD) patients treated by deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, compared to historical cohorts undergoing “awake” DBS with MER guidance. Very few studies, however, include internal controls. This study compares clinical outcomes following globus pallidus interna (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution. METHODS PD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively followed. The primary outcome measure was stimulation-induced change in motor function 6 months postoperatively, measured by the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) with the patient off medication. Secondary outcomes included change in quality of life, measured by the 39-item Parkinson's Disease Questionnaire (PDQ-39), change in levodopa daily equivalent dose (LEDD), stereotactic accuracy, stimulation parameters, and adverse events. RESULTS >Six-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake and 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake = 20.8 points [38.5%], asleeP = 18.8 points [37.5%], P = 0.45) or STN (awake = 21.6 points [40.3%], asleeP = 26.1 points [48.8%], P = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (P = 0.80, P = 0.54, respectively) and STN cohorts (P = 0.85, P = 0.49, respectively). CONCLUSION In PD patients, bilateral GPi and STN DBS utilizing the asleep method resulted in motor, quality-of-life, and medication reduction outcomes comparable to the awake method.


2009 ◽  
Author(s):  
Hunter Covert ◽  
Pennie S. Seibert ◽  
Caitlin C. Otto ◽  
Missy Coblentz ◽  
Nicole Whitener ◽  
...  

Neurology ◽  
2017 ◽  
Vol 89 (19) ◽  
pp. 1944-1950 ◽  
Author(s):  
Matthew A. Brodsky ◽  
Shannon Anderson ◽  
Charles Murchison ◽  
Mara Seier ◽  
Jennifer Wilhelm ◽  
...  

Objective:To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement.Methods:DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an “off”-levodopa Unified Parkinson’s Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency.Results:Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in “on” time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index (p = 0.004) and subscores for cognition (p = 0.011) and communication (p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs −6.31 ± 9.7 points (p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs −5.5 ± 9.6 points, p = 0.038).Conclusions:Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment.Clinicaltrials.gov identifier:NCT01703598.Classification of evidence:This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging–guided implantation is not significantly different from awake microelectrode recording–guided implantation in improving motor outcomes at 6 months.


Sign in / Sign up

Export Citation Format

Share Document