scholarly journals Chronic Bumetanide Infusion Alters Young Neuron Morphology in the Dentate Gyrus Without Affecting Contextual Fear Memory

2020 ◽  
Vol 14 ◽  
Author(s):  
Gibrán Gómez-Correa ◽  
Angelica Zepeda
Author(s):  
Benjamin Chew ◽  
Jae Ryun Ryu ◽  
Teclise Ng ◽  
Dongliang Ma ◽  
Ananya Dasgupta ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Iyo Koyanagi ◽  
Kazuhiro Sonomura ◽  
Toshie Naoi ◽  
Takaaki Ohnishi ◽  
Naoko Kaneko ◽  
...  

AbstractMetabolites underlying brain function and pathology are not as well understood as genes. Here, we applied a novel metabolomics approach to further understand the mechanisms of memory processing in sleep. As hippocampal dentate gyrus neurons are known to consolidate contextual fear memory, we analyzed real-time changes in metabolites in the dentate gyrus in different sleep–wake states in mice. Throughout the study, we consistently detected more than > 200 metabolites. Metabolite profiles changed dramactically upon sleep–wake state transitions, leading to a clear separation of phenotypes between wakefulness and sleep. By contrast, contextual fear memory consolidation induced less obvious metabolite phenotypes. However, changes in purine metabolites were observed upon both sleep–wake state transitions and contextual fear memory consolidation. Dietary supplementation of certain purine metabolites impaired correlations between conditioned fear responses before and after memory consolidation. These results point toward the importance of purine metabolism in fear memory processing during sleep.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina F. de Veij Mestdagh ◽  
Jaap A. Timmerman ◽  
Frank Koopmans ◽  
Iryna Paliukhovich ◽  
Suzanne S. M. Miedema ◽  
...  

AbstractHibernation induces neurodegeneration-like changes in the brain, which are completely reversed upon arousal. Hibernation-induced plasticity may therefore be of great relevance for the treatment of neurodegenerative diseases, but remains largely unexplored. Here we show that a single torpor and arousal sequence in mice does not induce dendrite retraction and synapse loss as observed in seasonal hibernators. Instead, it increases hippocampal long-term potentiation and contextual fear memory. This is accompanied by increased levels of key postsynaptic proteins and mitochondrial complex I and IV proteins, indicating mitochondrial reactivation and enhanced synaptic plasticity upon arousal. Interestingly, a single torpor and arousal sequence was also sufficient to restore contextual fear memory in an APP/PS1 mouse model of Alzheimer’s disease. Our study demonstrates that torpor in mice evokes an exceptional state of hippocampal plasticity and that naturally occurring plasticity mechanisms during torpor provide an opportunity to identify unique druggable targets for the treatment of cognitive impairment.


Author(s):  
Lucas A. Marcondes ◽  
Jociane de C. Myskiw ◽  
Eduarda G. Nachtigall ◽  
Rodrigo F. Narvaes ◽  
Ivan Izquierdo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document