scholarly journals Commentary: The causal role of α-oscillations in feature binding

2020 ◽  
Vol 14 ◽  
Author(s):  
Max A. Crayen ◽  
Pinar Yurt ◽  
Stefan Treue ◽  
Moein Esghaei
Keyword(s):  
2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Ghiani ◽  
Marcello Maniglia ◽  
Luca Battaglini ◽  
David Melcher ◽  
Luca Ronconi

Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8–12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40–60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.


2019 ◽  
Vol 116 (34) ◽  
pp. 17023-17028 ◽  
Author(s):  
Yanyu Zhang ◽  
Yifei Zhang ◽  
Peng Cai ◽  
Huan Luo ◽  
Fang Fang

The binding problem—how to integrate features into objects—poses a fundamental challenge for the brain. Neural oscillations, especially γ-oscillations, have been proposed as a potential mechanism to solve this problem. However, since γ-oscillations usually reflect local neural activity, how to implement feature binding involving a large-scale brain network remains largely unknown. Here, combining electroencephalogram (EEG) and transcranial alternating current stimulation (tACS), we employed a bistable color-motion binding stimulus to probe the role of neural oscillations in feature binding. Subjects’ perception of the stimulus switched between its physical binding and its illusory (active) binding. The active binding has been shown to involve a large-scale network consisting of spatially distant brain areas. α-Oscillations presumably reflect the dynamics of such large-scale networks, especially due to volume conduction effects in EEG. We found that, relative to the physical binding, the α-power decreased during the active binding. Additionally, individual α-power was negatively correlated with the time proportion of the active binding. Subjects’ perceptual switch rate between the 2 bindings was positively correlated with their individual α-frequency. Furthermore, applying tACS at individual α-frequency decreased the time proportion of the active binding. Moreover, delivering tACS at different temporal frequencies in the α-band changed subjects’ perceptual switch rate through affecting the active binding process. Our findings provide converging evidence for the causal role of α-oscillations in feature binding, especially in active feature binding, thereby uncovering a function of α-oscillations in human cognition.


2018 ◽  
Vol 77 (4) ◽  
pp. 173-184
Author(s):  
Wenxing Yang ◽  
Ying Sun

Abstract. The causal role of a unidirectional orthography in shaping speakers’ mental representations of time seems to be well established by many psychological experiments. However, the question of whether bidirectional writing systems in some languages can also produce such an impact on temporal cognition remains unresolved. To address this issue, the present study focused on Japanese and Taiwanese, both of which have a similar mix of texts written horizontally from left to right (HLR) and vertically from top to bottom (VTB). Two experiments were performed which recruited Japanese and Taiwanese speakers as participants. Experiment 1 used an explicit temporal arrangement design, and Experiment 2 measured implicit space-time associations in participants along the horizontal (left/right) and the vertical (up/down) axis. Converging evidence gathered from the two experiments demonstrate that neither Japanese speakers nor Taiwanese speakers aligned their vertical representations of time with the VTB writing orientation. Along the horizontal axis, only Japanese speakers encoded elapsing time into a left-to-right linear layout, which was commensurate with the HLR writing direction. Therefore, two distinct writing orientations of a language could not bring about two coexisting mental time lines. Possible theoretical implications underlying the findings are discussed.


Author(s):  
Christopher Evan Franklin

This chapter lays out the book’s central question: Assuming agency reductionism—that is, the thesis that the causal role of the agent in all agential activities is reducible to the causal role of states and events involving the agent—is it possible to construct a defensible model of libertarianism? It is explained that most think the answer is negative and this is because they think libertarians must embrace some form of agent-causation in order to address the problems of luck and enhanced control. The thesis of the book is that these philosophers are mistaken: it is possible to construct a libertarian model of free will and moral responsibility within an agency reductionist framework that silences that central objections to libertarianism by simply taking the best compatibilist model of freedom and adding indeterminism in the right junctures of human agency. A brief summary of the chapters to follow is given.


Sign in / Sign up

Export Citation Format

Share Document