scholarly journals New Insight of Circular RNAs' Roles in Central Nervous System Post-Traumatic Injury

2021 ◽  
Vol 15 ◽  
Author(s):  
Lvwan Xu ◽  
Xin Ye ◽  
Jinjie Zhong ◽  
Ying-ying Chen ◽  
Lin-lin Wang

The central nervous system (CNS) post-traumatic injury can cause severe nerve damage with devastating consequences. However, its pathophysiological mechanisms remain vague. There is still an urgent need for more effective treatments. Circular RNAs (circRNAs) are non-coding RNAs that can form covalently closed RNA circles. Through second-generation sequencing technology, microarray analysis, bioinformatics, and other technologies, recent studies have shown that a number of circRNAs are differentially expressed after traumatic brain injury (TBI) or spinal cord injury (SCI). These circRNAs play important roles in the proliferation, inflammation, and apoptosis in CNS post-traumatic injury. In this review, we summarize the expression and functions of circRNAs in CNS in recent studies, as well as the circRNA–miRNA–mRNA interaction networks. The potential clinical value of circRNAs as a therapeutic target is also discussed.

RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18677-18686
Author(s):  
Jia Liu ◽  
Kai Li ◽  
Ke Huang ◽  
Chengliang Yang ◽  
Zhipeng Huang ◽  
...  

Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (4) ◽  
pp. 298-308 ◽  
Author(s):  
Walter Zieglgänsberger ◽  
Achim Berthele ◽  
Thomas R. Tölle

AbstractNeuropathic pain is defined as a chronic pain condition that occurs or persists after a primary lesion or dysfunction of the peripheral or central nervous system. Traumatic injury of peripheral nerves also increases the excitability of nociceptors in and around nerve trunks and involves components released from nerve terminals (neurogenic inflammation) and immunological and vascular components from cells resident within or recruited into the affected area. Action potentials generated in nociceptors and injured nerve fibers release excitatory neurotransmitters at their synaptic terminals such as L-glutamate and substance P and trigger cellular events in the central nervous system that extend over different time frames. Short-term alterations of neuronal excitability, reflected for example in rapid changes of neuronal discharge activity, are sensitive to conventional analgesics, and do not commonly involve alterations in activity-dependent gene expression. Novel compounds and new regimens for drug treatment to influence activity-dependent long-term changes in pain transducing and suppressive systems (pain matrix) are emerging.


Author(s):  
Nick Ward

Residual upper limb dysfunction after injury to the central nervous system is a major clinical, socioeconomic and societal problem. Upper limb dysfunction can occur in many disorders of the central nervous system including cervical spinal cord injury and multiple sclerosis, but therapeutic approaches for upper limb dysfunction after stroke are the most thoroughly investigated. General approaches to treatment require:�(i)�avoidance of complications such as spasticity, pain, and loss of range; (ii) early high-dose engaging functional motor training; (iii) consideration of how neuroplastic processes might be engaged to enhance the effects of training. The evidence to deliver optimal personalized treatment strategies for all patients is lacking, but there is evidence that higher doses and intensity of upper limb therapy will be beneficial to most patients. Recent work has focused on how technological innovation might be used to promote recovery of upper limb function.


2011 ◽  
Vol 64 (9-10) ◽  
pp. 443-447
Author(s):  
Milan Cvijanovic ◽  
Svetlana Simic ◽  
Sofija Banic-Horvat ◽  
Zita Jovin ◽  
Petar Slankamenac ◽  
...  

Introduction. Neuropathic pain, or pain associated with disease or injury to the peripheral or central nervous system, is a common symptom of a heterogeneous group of conditions, including diabetic neuropathy, trigeminal neuralgia, postherpetic neuralgia and spinal cord injury. Chronic neuropathic pain should not be thought of as a symptom. It should truly be thought of as a disease with a very complicated pathophysiology. Pathophysiology. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central pathophysiologic phenomenon. The underlying dysfunction may involve deafferentation within the peripheral nervous system (e.g. neuropathy), deafferentation within the central nervous system (e.g. post-thalamic stroke) or an imbalance between the two (e.g. phantom limb pain). Clinical characteristics. Neuropathic pain is non-nociceptive, in contrast to acute nociceptive pain, and it can be described as ?burning?, ?electric?, ?tingling?, and ?shooting? in nature. Treatment. Rational polypharmacy is often necessary and actually it is almost always the rule. It would be an exception if a patient was completely satisfied with his treatment. Treatment goals should include understanding that our patients may need to be titrated and managed with more than one agent and one type of treatment. There should be the balance of safety, efficacy, and tolerability. Conclusion. There are many new agents and new applications of the existing agents being currently studied which will most certainly lead to even more improved ways of managing this very complicated set of disorders.


Sign in / Sign up

Export Citation Format

Share Document