scholarly journals Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention

2021 ◽  
Vol 15 ◽  
Author(s):  
Christina Hanenberg ◽  
Michael-Christian Schlüter ◽  
Stephan Getzmann ◽  
Jörg Lewald

Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker (“cocktail-party”) scenario. Forty-five healthy participants were tested, including younger (19–29 years; n = 21) and older (66–76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under “cocktail-party” conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under “cocktail-party” conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.

2020 ◽  
Author(s):  
Christina Hanenberg ◽  
Michael-Christian Schlüter ◽  
Stephan Getzmann ◽  
Jörg Lewald

AbstractAudiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of auditory-evoked event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker (“cocktail-party”) scenario. Forty-five healthy subjects were tested, including younger (19-29 yrs; n = 21) and older (66-76 yrs; n = 24) age groups. Three conditions of short-term training (duration 15 minutes) were compared, requiring localization of non-speech targets under “cocktail-party” conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, subjects were tested in an auditory spatial attention task (15 minutes), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, subjects. Also, at the time of the N2, electrical imaging revealed an enhancement of electrical activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under “cocktail-party” conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.


2001 ◽  
Vol 15 (1) ◽  
pp. 22-34 ◽  
Author(s):  
D.H. de Koning ◽  
J.C. Woestenburg ◽  
M. Elton

Migraineurs with and without aura (MWAs and MWOAs) as well as controls were measured twice with an interval of 7 days. The first session of recordings and tests for migraineurs was held about 7 hours after a migraine attack. We hypothesized that electrophysiological changes in the posterior cerebral cortex related to visual spatial attention are influenced by the level of arousal in migraineurs with aura, and that this varies over the course of time. ERPs related to the active visual attention task manifested significant differences between controls and both types of migraine sufferers for the N200, suggesting a common pathophysiological mechanism for migraineurs. Furthermore, migraineurs without aura (MWOAs) showed a significant enhancement for the N200 at the second session, indicating the relevance of time of measurement within migraine studies. Finally, migraineurs with aura (MWAs) showed significantly enhanced P240 and P300 components at central and parietal cortical sites compared to MWOAs and controls, which seemed to be maintained over both sessions and could be indicative of increased noradrenergic activity in MWAs.


1999 ◽  
Vol 354 (1387) ◽  
pp. 1135-1144 ◽  
Author(s):  
Scott Makeig ◽  
Marissa Westerfield ◽  
Jeanne Townsend ◽  
Tzyy-Ping Jung ◽  
Eric Courchesne ◽  
...  

Spatial visual attention modulates the first negative–going deflection in the human averaged event–related potential (ERP) in response to visual target and non–target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non–target stimuli presented at five attended and non–attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus–attention conditions and decomposed the non–target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1a R and N1a L ) was evoked by the left and right visual field stimuli, respectively. Component N1a R peaked ca. 9 ms earlier than N1a L . Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were not reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio–temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.


2008 ◽  
Vol 193 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Zhenzhu Yue ◽  
Gérard-Nisal Bischof ◽  
Xiaolin Zhou ◽  
Charles Spence ◽  
Brigitte Röder

Author(s):  
Jonathan M. Keefe ◽  
Viola S. Störmer

AbstractSpatial attention can be oriented endogenously, based on current task goals, or exogenously, triggered by salient events in the environment. Based upon literature demonstrating differences in the time course and neural substrates of each type of orienting, these two attention systems are often treated as fundamentally distinct. However, recent studies suggest that rhythmic neural activity in the alpha band (8-13Hz) and slow waves in the event-related potential (ERP) may emerge over parietal-occipital cortex following both endogenous and exogenous attention cues. To assess whether these neural changes index common processes of spatial attention, we conducted two within-subject experiments varying the two main dimensions over which endogenous and exogenous attention tasks typically differ: cue informativity (spatially predictive vs. non-predictive) and cue format (centrally vs. peripherally presented). This task design allowed us to tease apart neural changes related to top-down goals and those driven by the reflexive orienting of spatial attention, as well as examine their interactions in a novel hybrid cross-modal attention task. Our data demonstrate that both central and peripheral cues elicit lateralized ERPs over parietal-occipital cortex, though at different points in time, consistent with these ERPs reflecting the orienting of spatial attention. Lateralized alpha activity was also present across all tasks, emerging rapidly for peripheral cues and sustaining only for spatially informative cues. Overall, these data indicate that distinct slow-wave ERPs index the spatial orienting of endogenous and exogenous attention, while lateralized alpha activity represents a common signature of visual enhancement in anticipation of potential targets across both types of attention.


2003 ◽  
Vol 40 (6) ◽  
pp. 914-923 ◽  
Author(s):  
Michael Falkenstein ◽  
Jörg Hoormann ◽  
Joachim Hohnsbein ◽  
Thomas Kleinsorge

2020 ◽  
Vol 5 ◽  
pp. 239694152094551
Author(s):  
Seçkin Arslan ◽  
Lucie Broc ◽  
Fabien Mathy

Background and aims Children with developmental language disorder (DLD) often perform below their typically developing peers on verbal memory tasks. However, the picture is less clear on visual memory tasks. Research has generally shown that visual memory can be facilitated by verbal representations, but few studies have been conducted using visual materials that are not easy to verbalize. Therefore, we attempted to construct non-verbalizable stimuli to investigate the impact of working memory capacity. Method and results We manipulated verbalizability in visual span tasks and tested whether minimizing verbalizability could help reduce visual recall performance differences across children with and without developmental language disorder. Visuals that could be easily verbalized or not were selected based on a pretest with non-developmental language disorder young adults. We tested groups of children with developmental language disorder (N = 23) and their typically developing peers (N = 65) using these high and low verbalizable classes of visual stimuli. The memory span of the children with developmental language disorder varied across the different stimulus conditions, but critically, although their storage capacity for visual information was virtually unimpaired, the children with developmental language disorder still had difficulty in recalling verbalizable images with simple drawings. Also, recalling complex (galaxy) images with low verbalizability proved difficult in both groups of children. An item-based analysis on correctly recalled items showed that higher levels of verbalizability enhanced visual recall in the typically developing children to a greater extent than the children with developmental language disorder. Conclusions and clinical implication: We suggest that visual short-term memory in typically developing children might be mediated with verbal encoding to a larger extent than in children with developmental language disorder, thus leading to poorer performance on visual capacity tasks. Our findings cast doubts on the idea that short-term storage impairments are limited to the verbal domain, but they also challenge the idea that visual tasks are essentially visual. Therefore, our findings suggest to clinicians working with children experiencing developmental language difficulties that visual memory deficits may not necessarily be due to reduced non-verbal skills but may be due to the high amount of verbal cues in visual stimuli, from which they do not benefit in comparison to their peers.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3336 ◽  
Author(s):  
Ting-Yu Chueh ◽  
Chung-Ju Huang ◽  
Shu-Shih Hsieh ◽  
Kuan-Fu Chen ◽  
Yu-Kai Chang ◽  
...  

The aim of this study was to investigate the effects of open and closed sport participation on visuo-spatial attention and memory performance among young adults. Forty-eight young adults—16 open-skill athletes, 16 closed-skill athletes, and 16 non-athletes controls—were recruited for the study. Both behavioral performance and event-related potential (ERP) measurement were assessed when participants performed non-delayed and delayed match-to-sample task that tested visuo-spatial attention and memory processing. Results demonstrated that regardless of training typology, the athlete groups exhibited shorter reaction times in both the visuo-spatial attention and memory conditions than the control group with no existence of speed-accuracy trade-off. Similarly, a larger P3 amplitudes were observed in both athlete groups than in the control group for the visuo-spatial memory condition. These findings suggest that sports training, regardless of typology, are associated with superior visuo-spatial attention and memory performance, and more efficient neural resource allocation in memory processing.


Sign in / Sign up

Export Citation Format

Share Document