scholarly journals Documentation of the Development of Various Visuomotor Responses in Typically Reared Kittens and Those Reared With Early Selected Visual Exposure by Use of a New Procedure

2021 ◽  
Vol 15 ◽  
Author(s):  
Katelyn MacNeill ◽  
Amber Myatt ◽  
Kevin R. Duffy ◽  
Donald E. Mitchell

A new procedure was used to study the development of gaze (responses to moving targets or laser spots in normal kittens, those that had been reared in total darkness to 6 weeks of age, and others that received a period of monocular deprivation (MD). Gaze responses were observed to all stimuli in normal kittens at between 25–30 days of age and striking responses occurred on the same day or the next. Despite slow acquisition of spatial vision in the dark reared kittens over 3 months, they were able to follow and even strike at moving visual stimuli within a day of their initial exposure to light. By contrast, for a week following a period of MD, kittens showed no gaze or striking responses to moving stimuli when using their previously deprived eye. The very different profiles of acquisition of visuomotor skills and spatial vision in visually deprived kittens point to a dissociation between the neuronal populations that support these functions.

2018 ◽  
Author(s):  
Andreea Lazar ◽  
Chris Lewis ◽  
Pascal Fries ◽  
Wolf Singer ◽  
Danko Nikolić

SummarySensory exposure alters the response properties of individual neurons in primary sensory cortices. However, it remains unclear how these changes affect stimulus encoding by populations of sensory cells. Here, recording from populations of neurons in cat primary visual cortex, we demonstrate that visual exposure enhances stimulus encoding and discrimination. We find that repeated presentation of brief, high-contrast shapes results in a stereotyped, biphasic population response consisting of a short-latency transient, followed by a late and extended period of reverberatory activity. Visual exposure selectively improves the stimulus specificity of the reverberatory activity, by increasing the magnitude and decreasing the trial-to-trial variability of the neuronal response. Critically, this improved stimulus encoding is distributed across the population and depends on precise temporal coordination. Our findings provide evidence for the existence of an exposure-driven optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Donald E. Mitchell ◽  
Elise Aronitz ◽  
Philip Bobbie-Ansah ◽  
Nathan Crowder ◽  
Kevin R. Duffy

Recent studies conducted on kittens have revealed that the reduced visual acuity of the deprived eye following a short period of monocular deprivation imposed in early life is reversed quickly following a 10-day period spent in total darkness. This study explored the contribution of the fellow eye to the darkness-induced recovery of the acuity of the deprived eye. Upon emergence of kittens from darkness, the fellow eye was occluded for different lengths of time in order to investigate its effects on either the speed or the extent of the recovery of acuity of the deprived eye. Occlusion of the fellow eye for even a day immediately following the period spent in darkness blocked any recovery of the acuity of the deprived eye. Moreover, occlusion of the fellow eye two days after the period of darkness blocked any further visual recovery beyond that achieved in the short period when both eyes were open. The results imply that the darkness-induced recovery of the acuity of the deprived eye depends upon, and is guided by, neural activity in the mature neural connections previously established by the fellow eye.


2005 ◽  
Vol 94 (5) ◽  
pp. 3368-3387 ◽  
Author(s):  
Julianne E. Rollenhagen ◽  
Carl R. Olson

Some neurons in the inferotemporal cortex (IT) of the macaque monkey respond to visual stimuli by firing action potentials in a series of sharply defined bursts at a frequency of about 5 Hz. The aim of the present study was to test the hypothesis that the oscillatory responses of these neurons depend on competitive interactions with other neurons selective for different stimuli. To test this hypothesis, we monitored responses to probe images displayed in the presence of other already visible backdrop images. Two stimuli were used in testing each neuron: a foveal image that, when displayed alone, elicited an excitatory response (the “object”) and a peripheral image that, when displayed alone, elicited little or no activity (the “flanker”). We assessed the results of presenting these images separately and together in monkeys trained to maintain central fixation. Two novel phenomena emerged. First, displaying the object in the presence of the flanker enhanced the strength of the oscillatory component of the response to the object. This effect varied in strength across task contexts and may have depended on the monkey's allocating attention to the flanker. Second, displaying the flanker in the presence of the object gave rise to sometimes strong oscillations in which the initial phase was negative. This was all the more striking because the flanker by itself elicited little or no response. This effect was robust and invariant across task contexts. These results can be accounted for by competition between two neuronal populations, one selective for the object and the other for the flanker, if it is assumed that the visual responses of each population are subject to fatigue.


Although the behavioural effects of an early period of monocular deprivation imposed on kittens can be very severe, resembling an extreme form of the human clinical condition deprivation amblyopia, they are not necessarily irreversible. Considerable behavioural as well as physiological recovery can occur if normal visual input is restored to the deprived eye sufficiently early, particularly if the other (initially nondeprived) eye is occluded at the same time (reverse occlusion). However, past work has shown that in many situations the improvement in the vision of the initially deprived eye that occurs during reverse occlusion is not retained following the subsequent introduction of binocular visual input. Furthermore, the vision of the other eye is often reduced as well, with the result that the eventual outcome is a condition of bilateral amblyopia. This study first examines the consequences of several periods of reverse occlusion whose onset and duration would be thought to maximize the opportunity for good and long-standing recovery of vision in the initially deprived eye. However, only in a very restricted set of exposure conditions did animals acquire good vision in one or both eyes; in most situations the final outcome was one of bilateral amblyopia. A second set of experiments examined the consequences of various regimens of part-time reverse occlusion, where the initially non-deprived eye was occluded for only part of each day to allow a period of binocular visual exposure, on kittens that had been monocularly deprived until 6, 8, 10 or 12 weeks of age. Whereas short or long daily periods of occlusion of the initially non-deprived eye resulted eventually in amblyopia in one, or usually both, eyes, certain intermediate occlusion times (3.5 or 5 h each day) resulted in recovery of normal acuities, contrast sensitivity and vernier acuity in both eyes, in animals that had been monocularly deprived until 6, 8 or 10 weeks of age, but not in animals deprived for longer periods. Experiments were done to establish some of the factors that contributed to the successful outcome associated with certain of the regimens of part-time reverse occlusion. It was established that recovery was just as good in animals in which the visual axes were vertically misaligned by means of prisms during the daily period of binocular visual exposure, thereby indicating that the visual input to the two eyes need not be concordant. However, animals that received equivalent visual exposure of the two eyes each day, but successively rather than simultaneously, all developed very severe bilateral amblyopia. It would appear that for recovery to occur is necessary for the two eyes to receive simultaneous, but not necessarily concordant, visual exposure. These findings hold important implications for the nature of the mechanisms responsible for the dramatic behavioural changes associated with monocular deprivation and reverse occlusion, and for the clinical treatment of various forms of amblyopia in human infants.


Responses to visual stimuli and to electrical stimulation of the optic chiasma were analysed in neurons of the lateral geniculate nucleus, visual cortex and superior colliculus in monocularly deprived cats with different post-deprivation periods. If the cats had both eyes open in their post-deprivation period (1 year) no recovery from the effects of early deprivation was found in the responses of neurones in all 3 visual structures. In cats with a post-deprivation reverse closure we found an increase in the proportion of Y-cells recorded in the early deprived layer of LGN when compared to the Y-cell proportion found in the same layers immediately after the deprived eye was opened. In neurons of the visual cortex and superior colliculus the functional abnormalities remained unaltered. The late closure of the non-deprived eye for up to 3 years did not effect neurons normally activated through that eye. Removal of the non-deprived eye unmasked connections of the deprived eye’s pathway onto neurons in the visual cortex and the superior colliculus. The neurons showed no specificity for the direction of movement or the orientation of visual stimuli. This recovery from deprivation was greater after enucleating the cats at the age of 6 months than at 18 months after birth. In the lateral geniculate nucleus of these cats the proportion of Y-cells in the recorded sample driven by the deprived eye had recovered to the value of normal cats. The difficulties in relating these physiological findings to results from morphological or behavioural studies are discussed.


2021 ◽  
Vol 288 (1962) ◽  
Author(s):  
Daniel R. Chappell ◽  
Tyler M. Horan ◽  
Daniel I. Speiser

We have a growing understanding of the light-sensing organs and light-influenced behaviours of animals with distributed visual systems, but we have yet to learn how these animals convert visual input into behavioural output. It has been suggested they consolidate visual information early in their sensory-motor pathways, resulting in them being able to detect visual cues (spatial resolution) without being able to locate them (spatial vision). To explore how an animal with dozens of eyes processes visual information, we analysed the responses of the bay scallop Argopecten irradians to both static and rotating visual stimuli. We found A. irradians distinguish between static visual stimuli in different locations by directing their sensory tentacles towards them and were more likely to point their extended tentacles towards larger visual stimuli. We also found that scallops track rotating stimuli with individual tentacles and with rotating waves of tentacle extension. Our results show, to our knowledge for the first time that scallops have both spatial resolution and spatial vision, indicating their sensory-motor circuits include neural representations of their visual surroundings. Exploring a wide range of animals with distributed visual systems will help us learn the different ways non-cephalized animals convert sensory input into behavioural output.


2019 ◽  
Vol 116 (29) ◽  
pp. 14749-14754 ◽  
Author(s):  
Warren W. Pettine ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore

Neurons in sensory areas of the neocortex are known to represent information both about sensory stimuli and behavioral state, but how these 2 disparate signals are integrated across cortical layers is poorly understood. To study this issue, we measured the coding of visual stimulus orientation and of behavioral state by neurons within superficial and deep layers of area V4 in monkeys while they covertly attended or prepared eye movements to visual stimuli. We show that whereas single neurons and neuronal populations in the superficial layers conveyed more information about the orientation of visual stimuli than neurons in deep layers, the opposite was true of information about the behavioral relevance of those stimuli. In particular, deep layer neurons encoded greater information about the direction of planned eye movements than superficial neurons. These results suggest a division of labor between cortical layers in the coding of visual input and visually guided behavior.


1985 ◽  
Vol 53 (2) ◽  
pp. 572-589 ◽  
Author(s):  
G. D. Mower ◽  
W. G. Christen

Cats were reared in total darkness from birth until 4-5 mo of age (DR cats, n = 7) or with very brief visual experience (1 or 2 days) during an otherwise similar period of dark rearing [DR(1) cats, n = 3; DR(2) cats, n = 7]. Single-cell recordings were made in area 17 of visual cortex at the end of this rearing period and/or after a subsequent prolonged period of monocular deprivation. Control observations were made in normal cats (n = 3), cats reared with monocular deprivation from birth (n = 4), and cats monocularly deprived after being reared normally until 4 mo of age (n = 2). After rearing cats in total darkness, the majority of visual cortical cells were binocularly driven and the overall distribution of ocular dominance was not different from that of normal cats. Orientation-selective cells were very rare in dark-reared cats. Monocular deprivation imposed after dark rearing resulted in selective development of connections from the open eye. Most cells were responsive only to the open eye and the majority of these were orientation selective. These results were similar to, though less severe than, those found in cats reared with monocular deprivation from birth. Monocular deprivation imposed after 4 mo of normal rearing did not produce selective development of connections from the open eye in terms of either ocular dominance or orientation selectivity. In DR(1) cats visual cortical physiology was degraded in comparison to dark-reared cats after the rearing period. Most cells were binocularly driven but there was a higher frequency of unresponsive cells and a reduced frequency of orientation-selective cells. Subsequent monocular deprivation resulted in a further decrease in the number of binocularly driven cells and an increase in unresponsive cells. However, it did not produce a bias in favor of the open eye in terms of either ocular dominance or orientation selectivity. In DR(2) cats there was a high incidence of unresponsive cells and a marked loss of binocularly driven cells after the rearing period. Subsequent monocular deprivation failed to produce any significant changes.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Author(s):  
Warren W. Pettine ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore

SummaryNeurons in sensory areas of the neocortex are known to represent information both about sensory stimuli and behavioral state, but how these two disparate signals are integrated across cortical layers is poorly understood. To study this issue, we measured the coding of visual stimulus orientation and of behavioral state by neurons within superficial and deep layers of area V4 in monkeys while they covertly attended or prepared eye movements to visual stimuli. We show that single neurons and neuronal populations in superficial layers convey more information about the orientation of visual stimuli, whereas single neurons and neuronal populations in deep layers convey greater information about the behavioral relevance of those stimuli. In particular, deep layer neurons encode greater information about the direction of prepared eye movements. These results reveal a division of labor between laminae in the coding of visual input and visually guided behavior.


Sign in / Sign up

Export Citation Format

Share Document