scholarly journals Duration Comparisons for Vision and Touch Are Dependent on Presentation Order and Temporal Context

2021 ◽  
Vol 15 ◽  
Author(s):  
Yi Gao ◽  
Kamilla N. Miller ◽  
Michael E. Rudd ◽  
Michael A. Webster ◽  
Fang Jiang

Integrating visual and tactile information in the temporal domain is critical for active perception. To accomplish this, coordinated timing is required. Here, we study perceived duration within and across these two modalities. Specifically, we examined how duration comparisons within and across vision and touch were influenced by temporal context and presentation order using a two-interval forced choice task. We asked participants to compare the duration of two temporal intervals defined by tactile or visual events. Two constant standard durations (700 ms and 1,000 ms in ‘shorter’ sessions; 1,000 ms and 1,500 ms in ‘longer’ sessions) were compared to variable comparison durations in different sessions. In crossmodal trials, standard and comparison durations were presented in different modalities, whereas in the intramodal trials, the two durations were presented in the same modality. The standard duration was either presented first (<sc>) or followed the comparison duration (<cs>). In both crossmodal and intramodal conditions, we found that the longer standard duration was overestimated in <cs> trials and underestimated in <sc> trials whereas the estimation of shorter standard duration was unbiased. Importantly, the estimation of 1,000ms was biased when it was the longer standard duration within the shorter sessions but not when it was the shorter standard duration within the longer sessions, indicating an effect of temporal context. The effects of presentation order can be explained by a central tendency effect applied in different ways to different presentation orders. Both crossmodal and intramodal conditions showed better discrimination performance for <sc> trials than <cs> trials, supporting the Type B effect for both crossmodal and intramodal duration comparison. Moreover, these results were not dependent on whether the standard duration was defined using tactile or visual stimuli. Overall, our results indicate that duration comparison between vision and touch is dependent on presentation order and temporal context, but not modality.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rannie Xu ◽  
Russell M. Church ◽  
Yuka Sasaki ◽  
Takeo Watanabe

AbstractOur ability to discriminate temporal intervals can be improved with practice. This learning is generally thought to reflect an enhancement in the representation of a trained interval, which leads to interval-specific improvements in temporal discrimination. In the present study, we asked whether temporal learning is further constrained by context-specific factors dictated through the trained stimulus and task structure. Two groups of participants were trained using a single-interval auditory discrimination task over 5 days. Training intervals were either one of eight predetermined values (FI group), or random from trial to trial (RI group). Before and after the training period, we measured discrimination performance using an untrained two-interval temporal comparison task. Our results revealed a selective improvement in the FI group, but not the RI group. However, this learning did not generalize between the trained and untrained tasks. These results highlight the sensitivity of TPL to stimulus and task structure, suggesting that mechanisms of temporal learning rely on processes beyond changes in interval representation.


Perception ◽  
1978 ◽  
Vol 7 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Donald G Jamieson ◽  
William M Petrusic

The accuracy of many perceptual comparisons depends greatly on the order in which the to-be-compared stimuli are presented. With comparisons of durations around 300 ms, these presentation-order effects do not diminish, even with extended practice, when feedback about response accuracy is withheld. Providing such feedback greatly diminishes presentation-order effects and coincidentally produces substantial increases in response accuracy. The feedback acts in part through inducing response biases and in part through changes in sensitivity. The contradiction between studies which report time-order errors in duration comparison and those which do not is attributable to differences in the use of information feedback.


2021 ◽  
Author(s):  
◽  
Kaye McAulay

<p>The importance of temporal information versus place information in frequency analysis by the ear is a continuing controversy. This dissertation developes a temporal model which simulates human frequency discrimination. The model gives guantitative measures of performance for the discrimination of sinusoids in white gaussian noise. The model simulates human frequency discrimination performance as a function of frequency and signal-to-noise ratio. The model's predictions are based on the temporal intervals between the positive axis crossings of the stimulus. The histograms of these temporal intervals were used as the underlying distributions from which indices of discriminability were calculated. Human freguency discrimination data was obtained for five observers as a function of frequency and signal-to-noise ratio. The data were analysed using the method of Group-operating-characteristic (GOC) Analysis. This method of analysis statistically removes unique noise from data. The unique noise was removed by summing observers' ratings for identical stimuli. This method of analysis gave human frequency discrimination data with less unigue noise than any existing frequency data. The human data were used for evaluating the model. The GOC Analysis was also used to study the improvement in d' as a function of stimulus replications and signal-to-noise ratio. The model was a good fit to the human data at 250 Hz, for two signal-to-noise ratios. The model did not fit the data at 1000 Hz or 5000 Hz. There was some evidence of a transition occuring at 1000 Hz. This investigation supported the idea that human frequency discrimination relies on a temporal mechanism at low frequencies with a transition to some other mechanism at about lO00 Hz.</p>


2011 ◽  
Vol 22 (4) ◽  
pp. 257-262
Author(s):  
Wolfgang Skrandies

We investigated perceptual learning in 85 healthy adults with stereoscopic information contained in dynamic random dot stimuli or with vernier targets. Stimuli were flashed simultaneously at 8 locations at an eccentricity of 1.15° or 2.3°, and subjects had to detect a target in an “8 Alternative Forced Choice” task. For training at a given eccentricity stimuli at the other eccentricity served as a “no training” control. Viewing of visual targets for about 20 minutes resulted in a significant increase of discrimination performance only for the trained stimuli (significant interaction between training and time). Thus, learning is position specific: improved performance can be demonstrated only when test and training stimuli are presented to the same retinal areas. In combination with our earlier electrophysiological results, this study illustrates how perceptual training induces stimulus and visual field specific neural plasticity in adults.


1975 ◽  
Vol 40 (2) ◽  
pp. 451-457 ◽  
Author(s):  
Carl Auerbach

This experiment compared two modes of practice at a difficult frequency discrimination, i.e., one in which the frequency difference was initially correctly discriminated only 65% of the trials in a two-alternative forced-choice task. One group of Ss ( N = 13) was assigned to a progressive-practice group, in which the frequency difference to be discriminated was progressively changed from a large, easy, difference to the difficult, small, difference. The other group of Ss ( N = 13) received the same amount of practice as the first, but all at the difficult discrimination. Only the progressive-practice group improved their discrimination performance. Since no feedback was given, the effect of progressive practice is interpreted as “shaping” Ss' attentional response by virtue of the information provided by the successively more difficult discriminations. This “shaping” process is potentially available as a learning mechanism for other fine discriminations.


2017 ◽  
Vol 118 (2) ◽  
pp. 771-777 ◽  
Author(s):  
Tahereh Toosi ◽  
Ehsan K. Tousi ◽  
Hossein Esteky

It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of events.


Author(s):  
Sarah Maaß ◽  
Thomas Wolbers ◽  
Hedderik van Rijn ◽  
Martin Riemer

AbstractThe perception of temporal intervals changes during the life-span, and especially older adults demonstrate specific impairments of timing abilities. Recently, we demonstrated that timing performance and cognitive status are correlated in older adults, suggesting that timing tasks can serve as a behavioral marker for the development of dementia. Easy-to-administer and retest-capable timing tasks therefore have potential as diagnostic tools for tracking cognitive decline. However, before being tested in a clinical cohort study, a further validation and specification of the original findings is warranted. Here we introduce several modifications of the original task and investigated the effects of temporal context on time perception in older adults (> 65 years) with low versus high scores in the Montreal Cognitive Assessment survey (MoCA) and a test of memory functioning. In line with our previous work, we found that temporal context effects were more pronounced with increasing memory deficits, but also that these effects are stronger for realistic compared to abstract visual stimuli. Furthermore, we show that two distinct temporal contexts influence timing behavior in separate experimental blocks, as well as in a mixed block in which both contexts are presented together. These results replicate and extend our previous findings. They demonstrate the stability of the effect for different stimulus material and show that timing tasks can reveal valuable information about the cognitive status of older adults. In the future, these findings could serve as a basis for the development of a diagnostic tool for pathological cognitive decline at an early, pre-clinical stage.


2021 ◽  
Author(s):  
◽  
Kaye McAulay

<p>The importance of temporal information versus place information in frequency analysis by the ear is a continuing controversy. This dissertation developes a temporal model which simulates human frequency discrimination. The model gives guantitative measures of performance for the discrimination of sinusoids in white gaussian noise. The model simulates human frequency discrimination performance as a function of frequency and signal-to-noise ratio. The model's predictions are based on the temporal intervals between the positive axis crossings of the stimulus. The histograms of these temporal intervals were used as the underlying distributions from which indices of discriminability were calculated. Human freguency discrimination data was obtained for five observers as a function of frequency and signal-to-noise ratio. The data were analysed using the method of Group-operating-characteristic (GOC) Analysis. This method of analysis statistically removes unique noise from data. The unique noise was removed by summing observers' ratings for identical stimuli. This method of analysis gave human frequency discrimination data with less unigue noise than any existing frequency data. The human data were used for evaluating the model. The GOC Analysis was also used to study the improvement in d' as a function of stimulus replications and signal-to-noise ratio. The model was a good fit to the human data at 250 Hz, for two signal-to-noise ratios. The model did not fit the data at 1000 Hz or 5000 Hz. There was some evidence of a transition occuring at 1000 Hz. This investigation supported the idea that human frequency discrimination relies on a temporal mechanism at low frequencies with a transition to some other mechanism at about lO00 Hz.</p>


Sign in / Sign up

Export Citation Format

Share Document